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Introduction 
 
In	an	event	like	an	epidemic,	policymakers	are	keen	to	know	how	the	disease	will	
spread	-	for	instance,	they	might	be	keen	to	know	how	many	people	are	likely	to	
be	infected	in	future.	This	will	help	them	make	decisions	and	allocate	resources	
towards	disease	control.	For	instance,	this	knowledge	can	give	information	about	
the	number	of	ICUs	or	ventilators	required	in	a	region.	These	and	several	other	
predictions	concerning	the	spread	of	disease	are	accomplished	using	
mathematical	models	of	epidemiology. 
 
Mathematical	models	help	us	make	our	mental	models	more	quantitative.	
Models	are	not	reality;	however,	studies	across	the	natural	and	physical	sciences	
have	shown	the	importance	of	models	in	understanding	nature.	Say,	we	need	to	
send	a	spacecraft	to	the	Moon.	To	find	out	how	much	velocity	a	spacecraft	needs	
for	it	to	escape	the	Earth,	we	would	not	design	hundreds	of	spacecrafts	and	
launch	them	at	different	speeds	to	see	which	one	reaches	the	Moon,	right?	
Instead,	we	rely	on	mathematical	equations	that	clearly	predict	the	velocity	and	
all	other	features	that	a	spacecraft	should	have	to	reach	the	Moon.	 
 
Models	come	with	limitations.	To	extend	the	analogy,	our	spacecraft	is	designed	
to	reach	the	Moon,	not	Jupiter	and	our	model	would	need	some	tweaks	to	get	it	
there.	It	is	important	to	understand	the	assumptions	behind	a	model	and	its	
scope	before	using	it	to	make	predictions	and	policies.	 
 

Why	do	we	need	mathematical	models	for	
CoVID-19? 
 
Models	are	used	to	predict	the	future	of	a	population.	In	the	case	of	epidemics	
too,	we	need	mathematical	modelling	to	understand	how	the	disease	is	most	
likely	to	spread,	and	where	it	is	more	likely	to	spread.	This	will	help	avoid	risky	
trial	experiments	or	random	guesses	with	real	populations.	It	can	also	be	viewed	
as	a	shortcut,	instead	of	implementing	many	guesses	about	how	to	deal	with	the	
spread	of	a	disease	we	can	see	what	implementing	each	of	these	guesses	would	
mean,	using	some	nifty	equations,	and	take	more	well-informed	decisions.	Even	
as	you	read	this,	mathematical	modelling	has	been	at	the	heart	of	several	policy	
decisions	worldwide	regarding	the	response	to	CoVID-19.	 
 
However,	there	can	be	several	possible	models.	So,	the	question	is,	how	are	
models	developed	and	used?	Typically,	models	are	constructed	based	on	some	
reasonable	hypotheses.	They	are	then	validated	using	available	data.	For	



instance,	if	we	want	to	use	a	new	model	to	predict	the	number	of	CoVID-19	
infections	in	Chennai	in	June	2020,	we	first	validate	it	using	the	data	on	
infections	until	now.	In	other	words,	we	see	if	the	model	is	able	to	explain	the	
daily	number	of	infections	until	today	(April	4,	2020).	Once	the	model	is	
validated,	it	can	be	used	to	predict	future	behaviour	and	suggest	new	
experiments	to	study	the	population.	As	days	go	on	and	new	data	becomes	
available,	it	is	possible	to	test	the	model	predictions.	In	some	cases,	the	model	is	
improved/refined	as	more	data	becomes	available	and	the	cycle	continues.	 
 

 
 
Fig	1:	Experiments	and	models	are	tools	that	work	together	to	understand	nature	 

SIR	and	SEIR	Models	of	Infectious	Diseases 
 
SIR	models	are	commonly	used	to	study	the	number	of	people	having	an	
infectious	disease	in	a	population.	The	model	categorizes	each	individual	in	the	
population	into	one	of	the	following	three	groups	:	 
 

1. Susceptible	(S)	-	people	who	have	not	yet	been	infected	and	could	
potentially	catch	the	infection.		 

2. Infectious	(I)	-	people	who	are	currently	infected	(active	cases)	and	could	
potentially	infect	others	they	come	in	contact	with. 

3. 	Recovered	(R)	-	people	who	have	recovered	(or	have	died)	from	the	
disease	and	are	thereby	immune	to	further	infections.	

 



 
Fig	2:	Cartoon	showing	individuals	in	a	population	categorized	as	S,	I,	R.	 
 
These	compartments	contain	a	certain	number	of	people	on	each	day.	However,	
that	number	changes	from	day	to	day,	as	individuals	move	from	one	
compartment	to	another.	For	instance,	individuals	in	compartment	S	will	move	
to	the	compartment	I,	if	they	are	infected.	Similarly,	infected	people,	I	will	move	
to	the	recovered	R	compartment	once	they	recover	or	die	from	the	disease.	 
 

 
Fig	3:	Population	divided	into	compartments,	S,	I	and	R	whose	numbers	change	
with	time.	The	total	population	(the	sum	of	the	populations	in	S,	I,	R)	remains	the	
same	at	all	times. 
 
The	total	population	across	the	three	compartments	(S+I+R)	is	assumed	to	
remain	the	same	at	all	times.	This	is	just	the	total	population	of	the	country	(or	
state/region)	we	are	considering.	This	means	that	everyone	exists	in	one	of	these	
3	compartments.	This	ignores	the	fact	that	in	the	natural	course	of	things	
(epidemic	or	not),	births	and	deaths	continue	to	happen	in	the	country.	But	for	
short	epidemics	that	last	a	few	months,	this	is	a	reasonable	assumption	to	make!	
For	modelling	other	diseases	like	childhood	infectious	diseases	such	as	measles	
that	recur	regularly,	natural	birth	and	death	rates	of	the	population	will	also	
have	to	be	taken	into	account. 
 
As	in	the	current	epidemic,	from	media	reports	each	day,	one	can	find	the	
numbers	of	active	cases	(I)	and	the	number	of	recovered	or	dead	(R).	The	media	



also	reports	the	total	number	of	infected	people	to	date,	which	if	one	thinks	
about	it	is	nothing	but	the	sum	I+R. 
 
Our	goal	is	to	find	out	how	the	number	of	people	in	each	compartment	changes	
with	time.	In	order	to	do	that	we	make	two	simple	hypotheses	on	what	drives	
the	movement	of	people	between	these	compartments. 
 
The	first	hypothesis:	Let	us	suppose	you	have	not	been	infected	at	this	point	in	
time.	So,	you	would	belong	to	the	S	compartment.	You	can	be	exposed	to	the	
virus	only	when	you	come	in	contact	with	an	infected	person.	The	greater	the	
number	of	infected	people	in	the	general	population,	the	higher	the	chance	that	
you	will	come	in	contact	with	an	infected	individual.	This	same	principle	which	
applies	to	you,	applies	equally	to	every	other	susceptible	individual	in	the	
population.	Therefore,	the	rate	at	which	susceptible	people	become	infected,	i.e.,	
the	rate	at	which	people	are	transferred	from	the	S	to	the	I	compartments	on	a	
given	day	is	proportional	to	the	size	of	the	I	compartment	as	well	as	to	the	size	of	
the	S	compartment	on	that	day. 
 
The	second	hypothesis:	Infected	people	will	either	recover	or	die	of	the	disease.	
On	each	day,	a	certain	fraction	of	infected	individuals	will	recover	or	die.	This	
fraction	is	taken	to	be	a	constant,	independent	of	the	number	of	susceptible,	
infected,	or	recovered	individuals	on	that	given	day.	This	fraction	is	somehow	
“intrinsic”	to	the	specific	pathogen	and	captures	the	average	human	body’s	
recovery	time	for	that	particular	disease. 
 
What	mathematical	modellers	do	is	to	write	the	above	hypothesis	in	terms	of	
mathematical	equations	which	tell	you	how	the	number	of	susceptible,	infected	
and	recovered	individuals	change	with	time.	In	the	language	of	mathematics,	
such	equations	are	referred	to	as	differential	equations.	These	equations	are	
solved	by	a	process	called	integration,	and	these	solutions	will	allow	us	to	
calculate,	for	example,	the	number	of	infected	people	for	any	time	in	future. 
 
For	diseases	such	as	CoVID-19,	we	need	to	consider	another	compartment	called	
‘Exposed’	(E).	This	consists	of	individuals	who	might	have	the	virus	(due	to	
travel,	direct/indirect	with	an	already	positively	tested	person),	but	do	not	show	
any	symptoms.	For	example,	if	your	cousin	travelled	to	Wuhan	and	came	back	
she	is	more	susceptible	than	you	-	because	she	has	been	around	the	virus.	In	
other	words,	they	are	between	the	susceptible	and	infected	
compartments.		However,	despite	not	showing	any	symptoms,	these	
(asymptomatic)	individuals	can	still	transmit	the	disease	to	susceptible	
individuals.	The	modelling	proceeds	in	the	same	way	as	in	the	previous	case	and	
the	solution	allows	us	to	calculate	the	number	of	infectious	people	at	any	future	
time.	 

Disease	Transmission	and	Containment 
 
Models	enable	the	quantification	of	the	spread	of	diseases.		The	rate	of	spread	of	
infections	in	a	certain	population	is	governed	by	a	quantity	R0,	which	is	the	basic	
reproduction	number.	The	R0	value	can	be	looked	at	as	the	intensity	of	the	



infectious	disease	outbreak.	Higher	the	R0	value	of	a	disease,	the	faster	the	
disease	would	spread	among	the	population.	In	simple	terms,	the	value	of	R0	is	
equal	to	the	number	of	newly	infected	cases,	on	average,	an	infected	person	will	
cause.	The	R0	for	measles	ranges	from	12–18,	depending	on	factors	like	
population	density	and	life	expectancy.	This	shows	measles	that	is	a	highly	
infectious	disease.	If	one	person	gets	it,	then	about	18	will	follow.	Compared	to	
measles,	the	novel	coronavirus	virus	is	less	contagious.	As	this	virus	is	new,	we	
are	not	conclusive,	but	from	the	evidence	we	have,	R0	ranges	from	2.2–2.6.	
Several	biological	and	social	factors	come	into	play	in	determining	the	R0.	The	
incubation	period,	host	density,	modes	of	transmission	—	all	affect	the	R0.	 
 
The	key	insight	is	if	R0	is	less	than	1,	then	the	epidemic	will	die	out.	Thus,	our	
goal	is	to	reduce	R0.	We	can	reduce	R0	by	physical	distancing,	quarantining,	
vaccinating,	etc.	Studies	show	that	the	novel	coronavirus	can	travel	only	about	a	
meter	in	the	air	as	compared	to	the	100	meters	range	for	an	airborne	disease	like	
measles.	Second,	the	measles-causing	germs	can	live	outside	the	host	for	hours.	
In	contrast,	the	novel	coronavirus	can	survive	only	for	3	hours	in	the	air.	This	R0	
value,	however,	is	only	an	average	estimate.	For	some	still	mysterious	reason,	
some	infected	persons,	called	super-spreaders,	can	infect	a	lot	more.	A	woman	in	
South	Korea,	who	belonged	to	a	religious	sect,	attended	services	in	a	church.	
(ironically,	the	service	was	held	to	obtain	god’s	grace	to	protect	them	from	
coronavirus)	5016	people	connected	to	that	church	have	been	affected	until	
March	18th.	This	also	why	public	gatherings	are	forbidden;	we	do	not	want	to	
even	accidentally	trigger	the	hidden	super-spreaders. 



 
Fig	4:	Super	spreader	in	South	Korea 

Flattening	the	Curve 
In	the	early	stages,	the	disease	spreads	rapidly	through	the	population	via	a	
phenomenon	called	exponential	growth.	The	spread	of	infections	slows	down	as	
more	and	more	infected	people	recover	and	become	immune.	Eventually,	the	
number	of	infected	people	does	not	increase	with	time,	a	phenomenon	referred	
to	as	flattening	of	the	curve.	After	this,	the	number	of	infections	drops	and	
eventually	goes	to	zero	as	the	population	recovers	and	becomes	immune.	Thus,	
mathematical	modelling	can	give	us	the	maximum	number	of	people	who	are	
infected	by	the	disease	at	any	given	time	and	the	exact	time	when	we	see	this	
number	of	infected	people.	This	gives	an	idea	into	the	number	of	hospital	
beds/ICUs	required	for	the	population.	 
Now	say,	we	have	a	vaccine	against	an	epidemic.	This	will	reduce	R0	since	the	
number	of	susceptible	people	getting	infected	will	decrease.	As	more	people	are	
vaccinated,	the	disease	will	come	under	control.	Two	Scottish	mathematicians,	
Kermack	and	McKendrick	showed	(using	mathematics,	of	course!)	that	we	do	not	
have	to	vaccinate	the	entire	population	for	an	epidemic	to	get	over.	Vaccinating	
only	a	fraction	of	the	population	is	enough	and	this	fraction	depends	on	the	R0.	
This	fraction	for	the	novel	coronavirus	causing	COVID-19	has	been	found	to	be	
equal	to	60%.	This	result	is	another	example	to	show	how	mathematical	
modelling	is	extremely	useful. 



Individual	or	Agent-based	models 
 
In	a	SIR/SEIR	model,	many	people	fall	into	the	susceptible	compartment	but	not	
every	susceptible	individual	has	the	same	chance	of	encountering	an	infected	
individual.	Healthcare	workers,	for	instance,	have	more	chances	of	getting	
infected.	Individuals	belonging	to	the	same	network	(social,	religious)	have	
varying	chances	of	getting	infected	depending	on	their	network(s).	For	example,	
a	shopkeeper	meets	hundreds	of	customers	a	day	and	therefore	his	chance	of	
being	exposed	is	much	higher. 
 
This	is	where	agent-based	models	(ABMs),	also	known	as	individual-based	
models	or	IBMs,	become	useful.	These	are	models	that	simulate	the	behaviour	of	
autonomous	agents.	While	modelling	disease,	the	agents	are	usually	individual	
people.	This	contrasts	the	previous	model	which	only	kept	track	of	how	the	
number	of	susceptible,	exposed,	infectious	and	recovered	patients	varies	with	
the	progression	of	time. 
 

 
Fig	5:	Agent-based	models	[Might	be	under	copyright,	let’s	make	an	image?] 
(https://encrypted-tbn0.gstatic.com/images?q=tbn%3AANd9GcQciXX3BEIo3B8foZ0nCYDa2u-
MQ2KV68QHMxSHwkVnq-cDtXHq&usqp=CAU) 
 
The	agents	behave	according	to	a	prescribed	set	of	rules	that	determine	how	
they	interact	with	other	agents	and	with	their	environment.	These	agents	are	
capable	of	perceiving	their	environment	and	the	other	agents	around	them	and	
taking	decisions,	leading	to	actions,	based	on	their	perceptions.	Further,	the	
agents	may	be	capable	of	learning	from	the	outcomes	of	their	past	actions.	This	
kind	of	simulation,	in	which	individual	agents	decide	what	to	do	in	each	step	
overcomes	certain	drawbacks	of	the	SIR	models	and	its	derivatives,	such	as	the	
assumption	that	the	population	is	homogenous.	It	is	possible,	for	instance,	to	
have	different	types	of	agents	that	represent	members	of	different	age	groups	or	
of	different	professions	and	incorporate	facts	such	as	the	greater	exposure	of	
healthcare	workers	to	infected	individuals,	which	in	turn	increases	their	risk	of	
infection.	They	serve	as	"bottom-up"	models,	in	which	the	emergent	outcome	is	
determined	by	the	behaviour	of	the	individuals	in	the	population	and	require	no	
assumptions	regarding	the	behaviour	of	the	system	as	a	whole. 
 
ABMs	can	thus	incorporate	data	regarding	heterogeneity	in	the	
population,		social	networks	and	individual	interactions,	which	leads	to	a	more	
realistic	method	of	modelling	populations.	They	also	result	in	more	realistic	



contact	patterns	of	individuals	and	incorporate	some	of	the	stochasticity	
(randomness)	that	exists	in	the	real	world.	So,	ABMs	are	capable	of	predicting	
interesting	and	unexpected	emergent	phenomena. 
 
Such	models	have	previously	been	used	to	model	diseases	at	multiple	spatial	
scales,	from	within	a	city	to	across	an	entire	nation.	This	can	be	done	by	
modifying	the	numbers	and	behaviours	of	the	agents	and	the	nature	of	the	
environment.	ABMs	have	successfully	been	used	to	model	various	epidemics	
including	H1N1,	various	strains	of	influenza,	and	Ebola. 
 
One	major	drawback	to	ABMs	is	that	as	the	number	of	agents	increases,	so	does	
the	computational	power	required	to	run	the	simulation.	Large-scale	agent-
based	models	tend	to	require	high-performance	computing	environments	for	
their	implementation. 
	


