

Temperature effects on Microarrays

Arnaud Buhot SPrAM, INAC, CEA Grenoble d'Architectures Moléculaires

Outlook of the presentation

- Experimental Set Up
 - Grafting chemistry (electro-polymerization or SAMs)
 - Hybridization detection : Surface Plasmons Resonance Imaging
 - Temperature control (equilibrium and out-of-equilibrium scans)
- Electrostatic penalty
 - Equilibrium melting curves
 - Salt concentration effects
 - Confrontation to the model
- Potential applications
 - Single Nucleotide Polymorphism (SNP) genotyping
 - Homozygous case (pure targets)
 - Heterozygous case (mixed targets)
 - Low abundant somatic point mutation detection
 - Low temperature cooling hybridization
 - Temperature cycles
- Conclusion

Microarray fabrication : Grafting chemistries

- Substrate : Gold surface on a glass prism for SPR imaging
- Spot Fabrication: Two grafting chemistries
 - Self Assembled Monolayer (SAM) of DNA-thiols
 - Electro-polymerization of pyrrole and DNA-pyrrole
- Relative advantages and drawbacks
 - Better accessibility of targets and SPR signal for thiol SAMs
 - Better stability (temperature and time) for poly-pyrrole

Signal detection : Surface Plasmon Resonance imaging

- Multi-spots detection : parallel (from few tens to thousands)
- Real time kinetics without label
- Hybridization cell of $4\mu L$ with fluidics
- Precise temperature control from 15 to 85°C (home-made)
- Commercial apparatus by Genoptics (Horiba Jobin Yvon)

Kinetics of hybridization and denaturation

Ploen, May 10th 2011 J.B. Fiche et al. **Biophys. J. 92**, 935 (2007)

Experimental set up : Temperature scan

Temperature effects on plasmon curves

Temperature dependence of the water index leads to change of reflectivity

 $\Delta T=1^{\circ} \Leftrightarrow \Delta R=0.35^{\circ}$

Measurement protocol

Subtraction of a reference scan (1) from the detection scan (3) on each spot of the microarray:

detection....

Equilibrium Melting Curves

Model for electrostatic interactions

- DNA = Highly charged polymer
 - One charge per base
 - Spot = Charged surface
- Importance of Electrostatic Interactions
 - Effect of probe density σ
 - Effect of salt concentration c_s
- Hybridization
 - Increasing charge : $(N_{p}+N_{t}\theta)\sigma$
- Salt concentration

 $= c_t K_{pt} e^{t}$

- Screening effect increases with salt concentration c_s
- Hyp: Uniformly charged width H and $N_p = N_t$

 $\Gamma(1+\theta)$

Modified Langmuir Model

Competition Free Experiment

Ploen, May 10th 2011 A. Halperin et al., **Biophys. J. 86**, 718 (2004)

Electrostatic interactions on microarrays

Salt concentration dependence of the melting curves

Ploen, May 10th 2011 J. Fuchs et al. **Biophys. J. 99**, 1886 (2010)

Point Mutation Detection through Melting Temperature

- Spot A grafted with mutation probes complementary to mutation targets
- Spot B grafted with probes complementary to wild type targets
- Hybridization on both spots with a single sequence target
- Both mutation and wild type targets hybridize to both spots
- **Discrimination** : Different melting curves and denaturation temperatures due to different stabilities between perfect match and mismatch sequences
- Analogue to solution phase method by Wittwer (LightCycler) : High Resolution Melting Curve Analysis

SNP genotyping through Melting Curve Analysis

Ploen, May 10th 2011 J.B. Fic

J.B. Fiche et al. **Anal. Chem. 80**, 1049 (2008)

SNP genotyping through Melting Curve Analysis

Heterozygous case : 50% wild type and 50% mutation

SNP genotyping through Melting Curve Analysis

Low abundant mutation detection

• Somatic point mutations detection from tumor extract or even body fluids

- Low concentration of mutation vs wild type
- Detection limit = minimal percentage of mutation detected
- Question: How to improve the detection level?

Low temperature cooling scans with targets

- Idea : perfect match more stable hybridize at higher temperature
- Result : Ten-fold increase of the plateau level

Temperature cycles with targets

- Idea : Successive improvements by multiple cycles
- Result : Improvement dependent on the maximal temperature
- Experimental result for $T_{max} = 47^{\circ}C$

Conclusion

• Since hybridization is a thermodynamic reaction, temperature effects are important particularly on microarrays

- Temperature affects equilibrium as well as out-of-equilibrium melting curves and also kinetics
- Measuring equilibrium melting curves is experimentally possible
- It allows us to determine electrostatic effects, thermodynamic parameters and much more physico-chemical parameter effects on solid phase hybridization
- Possible applications : SNP genotyping or detection of somatic point mutations
- Drawbacks experienced for Fundamental Physico-Chemical studies
 - Grafting chemistry : none seems satisfying
 - Grafting density : independent determination difficult
 - Signal-to-noise ratio : low for precise confrontation to models
 - Dependence of the platform used (SPRi, microarrays fabrication)

Acknowledgements

- Theory
 - A. Halperin (Liphy, Grenoble)
 - E. B. Zhulina (St Petersbourg)
- Experiments
 - J.B. Fiche (PhD, 2006)
 - J. Fuchs (PhD, 2009)
 - C. Daniel (PhD, 2013)
 - F. Melaïne (Master 2 2011)
 - R. Calemczuk (SPrAM/CREAB)
 - Th. Livache (SPrAM/CREAB)
 - Y. Roupioz (SPrAM/CREAB)
- Collaborations
 - M. Tabrizian (McGill, Canada)
 - D. Del Atti et M. Mascini (Firenze, Italy)
 - E. Crapez (Canceropole Montpellier)