Nearest-neighbor model in microarray hybridization

Enrico Carlon, KULeuven

Plön – May 9, 2011

Enrico Carlon, KULeuven () Nearest-neighbor model in microarray hybridiz Plön – May 9, 2011

1 / 28

Outline

4 AP

I ybridization properties from controlled experiments (Agilent)

Hybridization properties from controlled experiments (Agilent) Breakdown of thermal equilibrium

Use Hybridization properties from controlled experiments (Agilent)

- Breakdown of thermal equilibrium
- Ø Modeling non-equilibrium effects

Use Hybridization properties from controlled experiments (Agilent)

- Breakdown of thermal equilibrium
- Modeling non-equilibrium effects
- S Exploring other arrays

Use Hybridization properties from controlled experiments (Agilent)

- Breakdown of thermal equilibrium
- Ø Modeling non-equilibrium effects
- Exploring other arrays

Algorithms for biological data analysis (Affymetrix)

Iybridization properties from controlled experiments (Agilent)

- Breakdown of thermal equilibrium
- Modeling non-equilibrium effects
- Exploring other arrays

Algorithms for biological data analysis (Affymetrix)
AffILM (available at www.bioconductor.org)

Nearest neighbor parameters $\Delta G_{37^{\circ}C}$ (DNA/DNA)

Table of nearest neighbor parameters for the hybridization free energies $\Delta G_{37^{\circ}C}$ in 1M NaCl expressed in kcal/mol. The orientation is 5'-3' for the upper strand and 3'-5' for the lower strand. Only 10 of the 16 parameters are independent.

AA TT	-1.00	$\begin{array}{c} AT \\ TA \end{array}$	-0.88	$AC \\ TG$	-1.44	$\begin{array}{c} AG \\ TC \end{array}$	-1.28
$TA \\ AT$	-0.58	$TT \\ AA$	-1.00	$TC \\ AG$	-1.30	$TG \\ AC$	-1.45
$CA \\ GT$	-1.45	$CT \\ GA$	-1.28	$CC \\ GG$	-1.84	$CG \\ GC$	-2.17
$GA \\ CT$	-1.30	$GT \\ CA$	-1.44	$GC \\ CG$	-2.24	$GG \\ CC$	-1.84

Example of a calculation

... plus boundary terms (effect of the double helix ends)

Mismatches

Base pairings can occurr also for non-complementary bases.

Here: possible structure of a mismatch between G (left) and A (right) G·A forms two hydrogen bonds!

Table of nearest-neighbor parameters for AG mismatches at $37^{\circ}C$ in 1M NaCl (unit kcal/mol)

$$\begin{array}{c|cccc} A\underline{A}\\ T\underline{G}\\ T\underline{G}\\ C\underline{G}\\ C\underline{G}\\ C\underline{G}\\ \end{array} & -0.25 \end{array} \begin{vmatrix} A\underline{G}\\ T\underline{A}\\ C\underline{G}\\ C\underline{A}\\ C\underline{G}\\ C\underline{A}\\ \end{array} & -0.52 \end{vmatrix} \begin{vmatrix} C\underline{A}\\ G\underline{G}\\ G\underline{G}\\ C\underline{A}\\ A\underline{G}\\ C\underline{G}\\ C\underline{A}\\ \end{array} & 0.03 \end{vmatrix} \begin{vmatrix} C\underline{G}\\ G\underline{A}\\ C\underline{G}\\ A\underline{A}\\ C\underline{G}\\ C\underline{A}\\ C\underline{A}$$

Complex system with a large set of chemical reactions

Enrico Carlon, KULeuven (ITF, K.U.Leuven)Nearest-neighbor model in microarray hybridiz

Aim

Understand/characterize hybridization in microarrays

Enrico Carlon, KULeuven (ITF, K.U.Leuven)Nearest-neighbor model in microarray hybridiz

Apr. 11, 2011 6 / 28

Understand/characterize hybridization in microarrays

Enrico Carlon, KULeuven (ITF, K.U.Leuven)Nearest-neighbor model in microarray hybridiz

Aim

Understand/characterize hybridization in microarrays

Enrico Carlon, KULeuven (ITF, K.U.Leuven)Nearest-neighbor model in microarray hybridiz

Apr. 11, 2011 6 / 28

Complex system with a large set of chemical reactions

Aim

Understand/characterize hybridization in microarrays

Enrico Carlon, KULeuven (ITF, K.U.Leuven)Nearest-neighbor model in microarray hybridiz

Complex system with a large set of chemical reactions

Aim

Understand/characterize hybridization in microarrays

Enrico Carlon, KULeuven (ITF, K.U.Leuven)Nearest-neighbor model in microarray hybridiz

Sufficiently simple setup to avoid "spurious" effects

Sufficiently simple setup to avoid "spurious" effects

5'-GTTTTCGAAGATTGGGTGGCACTGTTGTAA-3' target in solution

Sufficiently simple setup to avoid "spurious" effects

5'-GTTTTCGAAGATTGGGTGGCACTGTTGTAA-3' 3'-CAAAAGCTTCTAACCCACCGTGACAACATT-5'

target in solution perfect match

Sufficiently simple setup to avoid "spurious" effects

5'-GTTTTCGAAGATTGGGTGGCACTGTTGTAA-3' 3'-CAAAAGCTTCTAACCCACCGTGACAACATT-5' 3'-CAAAA**A**CTTCTAACCCACCGTGACAACATT-5'

- perfect match
- 1 mismatch

Sufficiently simple setup to avoid "spurious" effects

- 5'-GTTTTCGAAGATTGGGTGGCACTGTTGTAA-3'
- 3'-CAAAAGCTTCTAACCCACCGTGACAACATT-5'
- 3'-CAAAAACTTCTAACCCACCGTGACAACATT-5'

3'-CAAAACCTTCTAACCCACCGTGACAACATT-5'

- perfect match
- 1 mismatch
- 1 mismatch

Sufficiently simple setup to avoid "spurious" effects

- 5'-GTTTTCGAAGATTGGGTGGCACTGTTGTAA-3'
- 3'-CAAAAGCTTCTAACCCACCGTGACAACATT-5'
- ${\tt 3'-CAAAA} {\bf A} {\tt CTTCTAACCCACCGTGACAACATT-5'}$
- 3'-CAAAA C CTTCTAACCCACCGTGACAACATT-5'
- 3'-CAAAA**T**CTTCTAACCCACCGTGACAACATT-5'

- perfect match
- 1 mismatch
- 1 mismatch
- 1 mismatch

Sufficiently simple setup to avoid "spurious" effects

- 5'-GTTTTCGAAGATTGGGTGGCACTGTTGTAA-3'
- 3'-CAAAAGCTTCTAACCCACCGTGACAACATT-5'
- 3'-CAAAA**A**CTTCTAACCCACCGTGACAACATT-5'
- 3'-CAAAACCTTCTAACCCACCGTGACAACATT-5'
- 3'-CAAAA**T**CTTCTAACCCACCGTGACAACATT-5'
- 3'-CAAAAG**A**TTCTAACCCACCGTGACAACATT-5'

target in solution

perfect match

- 1 mismatch
- 1 mismatch
- 1 mismatch
- 1 mismatch

Sufficiently simple setup to avoid "spurious" effects

5'-GTTTTCGAAGATTGGGTGGCACTGTTGTAA-3' 3'-CAAAAGCTTCTAACCCACCGTGACAACATT-5' 3'-CAAAAACTTCTAACCCACCGTGACAACATT-5' 3'-CAAAACCTTCTAACCCACCGTGACAACATT-5' 3'-CAAAATCTTCTAACCCACCGTGACAACATT-5' 3'-CAAAAGATCTTCTAACCCACCGTGACAACATT-5'

3'-CAAAAGCTTCTAACCCACCGTGACGACATT-5' 1 m

target in solution

perfect match

1 mismatch

1 mismatch

1 mismatch

1 mismatch

1 mismatch

Sufficiently simple setup to avoid "spurious" effects

5'-GTTTTCGAAGATTGGGTGGCACTGTTGTAA-3' 3'-CAAAAGCTTCTAACCCACCGTGACAACATT-5' 3'-CAAAAACTTCTAACCCACCGTGACAACATT-5' 3'-CAAAACCTTCTAACCCACCGTGACAACATT-5' 3'-CAAAATCTTCTAACCCACCGTGACAACATT-5' 3'-CAAAAGATTCTAACCCACCGTGACAACATT-5'

3'-CAAAAGCTTCTAACCCACCGTGAC**G**ACATT-5' 3'-CAAAAGCTTCTAACCCACCGTGAC**T**ACATT-5'

- perfect match
- 1 mismatch

Sufficiently simple setup to avoid "spurious" effects

5'-GTTTTCGAAGATTGGGTGGCACTGTTGTAA-3' 3'-CAAAAGCTTCTAACCCACCGTGACAACATT-5' 3'-CAAAAACTTCTAACCCACCGTGACAACATT-5' 3'-CAAAACCTTCTAACCCACCGTGACAACATT-5' 3'-CAAAATCTTCTAACCCACCGTGACAACATT-5' 3'-CAAAAGATTCTAACCCACCGTGACAACATT-5'

3'-CAAAAGCTTCTAACCCACCGTGACGACATT-5' 3'-CAAAAGCTTCTAACCCACCGTGACTACATT-5' 3'-CAAAAACTTCTCCACCCACCGTGACAACATT-5'

- perfect match
- 1 mismatch
- 2 mismatches

Sufficiently simple setup to avoid "spurious" effects

5'-GTTTTCGAAGATTGGGTGGCACTGTTGTAA-3' 3'-CAAAAGCTTCTAACCCACCGTGACAACATT-5' 3'-CAAAAACTTCTAACCCACCGTGACAACATT-5' 3'-CAAAACCTTCTAACCCACCGTGACAACATT-5' 3'-CAAAATCTTCTAACCCACCGTGACAACATT-5' 3'-CAAAAGATTCTAACCCACCGTGACAACATT-5'

3'-CAAAAGCTTCTAACCCACCGTGACGACATT-5' 3'-CAAAAGCTTCTAACCCACCGTGACTACATT-5' 3'-CAAAAACTTCTCACCCACCGTGACAACATT-5' 3'-CAAAAACTTCTGACCCACCGTGACAACATT-5'

- perfect match
- 1 mismatch
- 2 mismatches
- 2 mismatches

3'-CAAAAGCTTCTAACCCACTGTGACTACATT-5'

- 3' -CAAAAGCTTCTAACCCACCGTGAC**G**ACATT-5'3' -CAAAAGCTTCTAACCCACCGTGAC**T**ACATT-5'3'-CAAAAACTTCTCACCCACCGTGACAACATT-5' 3' -CAAAAACTTCTGACCCCCCGTGACAACATT-5'3' -CAAAAACTTCTTACCCACCGTGACAACATT-5'
- 5'-GTTTTCGAAGATTGGGTGGCACTGTTGTAA-3' 3'-CAAAAGCTTCTAACCCACCGTGACAACATT-5' 3' - CAAAAAACTTCTAACCCACCGTGACAACATT-5'3'-CAAAACCTTCTAACCCACCGTGACAACATT-5'3' - CAAAATCTTCTAACCCACCGTGACAACATT-5'3'-CAAAAGATTCTAACCCACCGTGACAACATT-5'
- Sufficiently simple setup to avoid "spurious" effects

Determination of ΔG from Agilent Custom Arrays

- target in solution
- perfect match
- 1 mismatch

- 1 mismatch
- 2 mismatches
- 2 mismatches
- 2 mismatches
- 2 mismatches

7 / 28

3'-CAAAAGCTTCTAACCCAC**T**GTGAC**T**ACATT-5' 2 mismatches total 1006 sequences, replicated 15 times = 15K array

- 3' -CAAAAGCTTCTAACCCACCGTGAC**G**ACATT-5'3'-CAAAAGCTTCTAACCCACCGTGAC**T**ACATT-5' 3'-CAAAAACTTCTCACCCACCGTGACAACATT-5' 3' -CAAAAACTTCTGACCCCCCGTGACAACATT-5'3' -CAAAAACTTCTTACCCACCGTGACAACATT-5'
- 5'-GTTTTCGAAGATTGGGTGGCACTGTTGTAA-3' 3'-CAAAAGCTTCTAACCCACCGTGACAACATT-5' 3' - CAAAAAACTTCTAACCCACCGTGACAACATT - 5'3' - CAAAACCTTCTAACCCACCGTGACAACATT - 5'3' - CAAAATCTTCTAACCCACCGTGACAACATT-5'3'-CAAAAGATTCTAACCCACCGTGACAACATT-5'

Sufficiently simple setup to avoid "spurious" effects

Determination of ΔG from Agilent Custom Arrays

- perfect match
- 1 mismatch
- 2 mismatches
- 2 mismatches
- 2 mismatches

Intensity vs. $\Delta G_{\rm sol}$

Expected: Langmuir isotherm

 $I = \frac{Ace^{\Delta G/RT}}{1 + ce^{\Delta G/RT}}$

data for 3 different concentrations (c)

lines: slope = 1/RT

scatter of the data

deviations from 1/RT already far from chemical saturation

No fitting parameters!

 $\Delta G_{\rm sol}$ is computed from tabulated literature data (parameters measured in hybridization in solution)

Expected: Langmuir isotherm

 $I = \frac{Ace^{\Delta G/RT}}{1 + ce^{\Delta G/RT}}$

data for 3 different concentrations (c)

lines: slope = 1/RT

scatter of the data

deviations from 1/RT already far from chemical saturation

No fitting parameters!

 $\Delta G_{\rm sol}$ is computed from tabulated literature data (parameters measured in hybridization in solution)

Enrico Carlon, KULeuven (ITF, K.U.Leuven)Nearest-neighbor model in microarray hybridiz

Fitting free energy parameters from experimental data

1006 data points and 58 parameters

Fit to $I = A \exp(\Delta G/RT)$

Fitting free energy parameters from experimental data

1006 data points and 58 parameters

Fit to

 $I = A \exp(\Delta G/RT)$ Two temperatures!

Identical behavior for 4 different sequences

Enrico Carlon, KULeuven (ITF, K.U.Leuven)Nearest-neighbor model in microarray hybridiz

Comparison of free energy in the array and in solution

 $\Delta\Delta G$: difference between perfect match hybridization and hybridization with an internal mismatch.

Moderate correlation between solution and microarray free energies

Apr. 11, 2011

11 / 28
Understanding the two regimes

Hybridization in solution: nucleation and fast zippering

Is zippering rapid in microarrays? Probably not!

The simplest description of a long lived partially zipped state is through a 3 state model

Understanding the two regimes

Hybridization in solution: nucleation and fast zippering

ls zippering rapid in microarrays? Probably not!

The simplest description of a long lived partially zipped state is through a 3 state model

Four parameters

Hybridization rates: k_1 , k_2 (forward), k_{-1} , k_{-2} (reverse)

Thermodynamics $k_{-1}/k_1 = e^{-\Delta G'/RT}$ $k_{-2}/k_2 = e^{-(\Delta G - \Delta G')/RT}$

Two vs. three state model

Two state model
$$\frac{d\theta}{dt} = ck_1(1-\theta) - k_{-1}\theta$$

Equilibrium
$$\theta_{eq} = \frac{ck_1}{k_{-1} + ck_1} = \frac{cK}{1+cK} = \frac{ce^{\Delta G/RT}}{1+ce^{\Delta G/RT}}$$

Enrico Carlon, KULeuven (ITF, K.U.Leuven)Nearest-neighbor model in microarray hybridiz

Two vs. three state model

Two state m kinetics	odel	$\frac{d\theta}{dt} = ck_1(1-\theta) - k_{-1}\theta$					
Equilibrium		$ heta_{eq}$	$=\frac{ck_1}{k_{-1}+ck_1}$	$=\frac{cK}{1+cR}$	$\overline{K} =$	$\frac{ce^{\Delta G/RT}}{1+ce^{\Delta G/RT}}$	
Three state model	$\frac{\frac{d\theta^{(1)}}{dt}}{\frac{d\theta^{(2)}}{dt}}$	_	$ck_1(1- heta^{(1)})$ $k_2 heta^{(1)}-k_{-2}$	$- heta^{(2)})+ heta^{(2)}$	k_{-2}	$e^{\theta^{(2)}} - (k_{-1} + k_2)e^{\theta^{(2)}}$	9(1)
Equilibrium $(c \rightarrow 0)$	$ heta_{eq}^{(1)}$	$(1)^{(1)} = 0$	$c\frac{k_1}{k_{-1}} = ce^{\Delta G}$	T'/RT	$\theta_{eq}^{(2)}$	$c_{l}^{2} = c \frac{k_{1}k_{2}}{k_{-1}k_{-2}} = c \epsilon$	$\Delta G/RT$
Assumption	:						

 $\begin{array}{l} k_1, \ k_2 \ \text{independent on } \Delta G \\ \Delta G' \approx \gamma \Delta G \qquad \mbox{(they should be monotonically linked)} \end{array}$

Enrico Carlon, KULeuven (ITF, K.U.Leuven)Nearest-neighbor model in microarray hybridiz

Apr. 11, 2011 13 / 28

Three state model

Apr. 11, 2011 14 / 28

Experiments (Agilent arrays)

Target sequence L = 30Exper. to ≈ 86 h

Temperature 65°C

Solid line: three state model Dashed line:

Equilibrium isotherm

Experiments (Agilent arrays)

Apr. 11, 2011 15 / 28

Experiments (Agilent arrays)

Apr. 11, 2011 15 / 28

140 targets and probes with 1 or 2 mismatches

Enrico Carlon, KULeuven (ITF, K.U.Leuven)Nearest-neighbor model in microarray hybridiz

140 targets and probes with 1 or 2 mismatches Solid line: $T_{\rm eff} \approx 1200K$

Enrico Carlon, KULeuven (ITF, K.U.Leuven)Nearest-neighbor model in microarray hybridiz

140 targets and probes with 1 or 2 mismatches Solid line: $T_{\rm eff} \approx 1200 K$ Dashed line: $T_{\rm exp} \approx 45 C$

140 targets and probes with 1 or 2 mismatches Solid line: $T_{\rm eff} \approx 1200K$ Dashed line:

 $T_{\rm exp} \approx 45C$

Dynamical saturation

140 targets and probes with 1 or 2 mismatches Solid line: $T_{\rm eff} \approx 1200K$ Dashed line: $T_{\rm exp} \approx 45C$ Dynamical saturation

... or depletion?

140 targets and probes with 1 or 2 mismatches Solid line: $T_{\rm eff} \approx 1200 K$ Dashed line: $T_{\rm exp} \approx 45C$ Dynamical saturation ... or depletion? Solid line: three state model

Experiment with 4 targets and probes up to three mismatches

Experiment with 4 targets and probes up to three mismatches

Large range of ΔG

Experiment with 4 targets and probes up to three mismatches Large range of ΔG Solid line: $T_{\rm exp} \approx 45C$

Apr. 11, 2011 17 / 28

Experiment with 4 targets and probes up to three mismatches Large range of ΔG Solid line: $T_{exp} \approx 45C$ Dashed line: scanner saturation

Apr. 11, 2011 17 / 28

Practical consequences

Microarrays working in a non-equilibrium regime suffer from enhanced cross-hybridization

Microarrays working in a non-equilibrium regime suffer from enhanced cross-hybridization

Example: two different sequences in solution binding to the same probe at the surface. The first is perfect match and has concentration c, the second carries mismatches and has concentration c'.

$$I = cf(\Delta G) + c'f(\Delta G')$$

Practical consequences

Microarrays working in a non-equilibrium regime suffer from enhanced cross-hybridization

Example: two different sequences in solution binding to the same probe at the surface. The first is perfect match and has concentration c, the second carries mismatches and has concentration c'.

 $I = cf(\Delta G) + c'f(\Delta G')$

We wish to have $f(\Delta G) \gg f(\Delta G')$. In equilibrium

$$\frac{f_{eq}(\Delta G)}{f_{eq}(\Delta G')} = e^{(\Delta G - \Delta G')/RT_{exp}}$$

is maximized...

Practical consequences

Microarrays working in a non-equilibrium regime suffer from enhanced cross-hybridization

Example: two different sequences in solution binding to the same probe at the surface. The first is perfect match and has concentration c, the second carries mismatches and has concentration c'.

 $I = cf(\Delta G) + c'f(\Delta G')$

We wish to have $f(\Delta G) \gg f(\Delta G').$ In equilibrium

$$\frac{f_{eq}(\Delta G)}{f_{eq}(\Delta G')} = e^{(\Delta G - \Delta G')/RT_{exp}}$$

is maximized... while in non-equilibrium

$$\frac{f(\Delta G)}{f(\Delta G')} = e^{(\Delta G - \Delta G')/RT_{\text{eff}}} \ll \frac{f_{eq}(\Delta G)}{f_{eq}(\Delta G')}$$

Application: Mutant identification (Jef's talk)

Apr. 11, 2011 19 / 28

Apr. 11, 2011 20 / 28

Enrico Carlon, KULeuven (ITF, K.U.Leuven)Nearest-neighbor model in microarray hybridiz

AffyILM: Algorithm available from BioConductor

AffyILM

... background subtraction

AffyILM: Algorithm available from BioConductor

Enrico Carlon, KULeuven (ITF, K.U.Leuven)Nearest-neighbor model in microarray hybridiz

Apr. 11, 2011 20 / 28

AffyILM: Algorithm available from BioConductor

AffyILM

... mean-field approximation

Enrico Carlon, KULeuven (ITF, K.U.Leuven)Nearest-neighbor model in microarray hybridiz

1st - Estimating of the Background Noise

Motivation:

- Strong signals $(I_{sp} \gg I_0)$ \Rightarrow Gene expressed
- Weak signals (*I_{sp} ≈ I*₀)
 ⇒ Weakly expressed gene *or* background noise?

Aim

Calculation of background intensity for each probe on array

Enrico Carlon, KULeuven (ITF, K.U.Leuven)Nearest-neighbor model in microarray hybridiz

Apr. 11, 2011 21 / 28

2nd - Specific signal: extended Langmuir model

θ: fraction of bound probesc: mRNA concentrationα: fraction "free" mRNA

$$\theta = \frac{\alpha c e^{\Delta G/RT}}{1 + \alpha c e^{\Delta G/RT}}$$

$$\alpha = \frac{1}{1 + \tilde{c}e^{\Delta G_{\rm R}/RT'}}$$

Intensity: $I = A\theta$ ΔG , ΔG_R : from data in solution Parameters: A, T, T', \tilde{c}

 $\begin{array}{l} \mbox{Scaling variable} \\ x' = \alpha c \exp(\Delta G/RT) \\ \mbox{Fitted effective temperature } T \approx 700K \end{array}$

Apr. 11, 2011 22 / 28

Modeling Hybridization in solution

Chemical equilibrium

Target conservation

 $\frac{[t][\hat{t}_{i,j}]}{[t\hat{t}_{i,j}]} = e^{\Delta G_R(i,j)/RT}$ $[t] + \sum_{i,j} [t\hat{t}_{i,j}] = c$

$$\alpha = \frac{[t]}{c} = \frac{1}{1 + \sum_{i,j} [\hat{t}_{i,j}] e^{-\Delta G_R(i,j)/RT}} \approx \frac{1}{1 + \tilde{c} e^{-\Delta G_R(1,25)/RT_{\text{eff}}}}$$

Apr. 11, 2011 23 / 28

Calibration data (spike-in)

 ≈ 300 data points (concentrations $c = 0, 0.25, 0.5 \dots 1024$ pM) Scaling collapses (4 fitting parameters) RED : PM / GREEN : MM

x-axis: scaling variable $x' = \alpha c \exp(\Delta G/RT)$ y-axis: background subtracted intensities

Apr. 11, 2011 24 / 28

Outliers

<u>1091_at9</u> sequence alignment (GenBank)

3'-CTG TCC	TTG	GTC	CG	C ATG	GCT	CGT	T-5'	Affymetrix	
3'-CTG TCC	TTG	GTC	CG	$C \ ATG$	GCT	CGT	T-5'	M65066.1	ase
3'-CTG TCC	TTG	GTC	CG	AGGCT	GCT	CGT	T-5'	BC013368.2	tab
3'-CTG TCC	TTG	GTC	CG	AGGCT	GCT	CGT	T-5'	AL833563.1	Da

Error in the annotation:

the correct sequence was submitted to GenBank in 2003, after the microarray was designed.

affyILM (available at www.bioconductor.org)

Input: Experimental microarray data (Affymetrix) Output: Estimate of Concentration per each probe sequence

Collaborators

Institute for Theoretical Physics - KULeuven M. Baiesi, F. Berger, A. Ferrantini, K. M. Kroll, J. C. Walter J. Hooyberghs (& Flemish Institute for Technological Research, VITO)

Institute for Theoretical Physics - Utrecht University G. T. Barkema, J. Klein Wolterink, G. Mulders

Micorarray Facility - Flemish Institute for Biotechnology (VIB) P. Van Hummelen, S. Weckx

Financial support from FWO (Flemish Research Council), KULeuven, VITO, VIB

Apr. 11, 2011

27 / 28

Recent Papers

G. Mulders, G. Barkema and E. Carlon Inverse Langmuir method for oligonucleotide microarray analysis BMC Bioinformatics **10**, 64 (2009)

J. Hooyberghs, M. Baiesi, A. Ferrantini and E. Carlon Breakdown of thermodynamic equilibrium for DNA hybridization in microarrays Phys. Rev. E **81**, 012901 (2010).

J. Hooyberghs and E. Carlon Hybridisation thermodynamic parameters allow accurate detection of point mutations with DNA microarrays Biosens. and Bioel. **26**, 1692 (2010)

J. C. Walter, K. M. Kroll, J. Hooyberghs and E. Carlon Non-Equilibrium Effects in DNA Microarrays: A Multiplatform Study J.Phys. Chem. B (in press). DOI: 10.1021/jp2014034

Downloadable from http://itf.fys.kuleuven.be/~enrico/