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GLAM

* |n a model array system, a generalized Langmuir
model can be used to estimate concentration

from intensity

* Can train on a subset of the data to generalize
Langmuir parameters from the whole array —
opens up possibilities for internal controls

* Performs well in the linear range of the
experiment

* Performance degrades only somewhat on real
data (e.g. MAQC data sets)

Gharaibeh et al, 2010a
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Compares favorably to hybridization-based and probe property dependent approaches.



Hypotheses (2005)

* We can use modified solution hybridization
models to accurately predict surface behavior

* |f we can model the situations that lead to
low-performing probes or problem
interactions on the microarray, we can “fix”
them in the design or interpretation phase.



Hybridization modeling

Non-specific
hybridization

Specific
hybridization

p = probe
t = specific target

pt = probe-specific target duplex
Intramolecular
folding

t = non-specific target

pt = probe-non-specific target duplex
p! = folded probe

t/ = folded specific target

t/ = folded non-specific target



Four components

Polymorphism
Cross-hybridization
Kinetic interference (target)

Kinetic interference (probe)



Effect of small-number mismatches

e We modeled 1- 2- and 3-mer central
mismatches in 50mers

e Solution n-state model is predictive;
mismatches are detectable



Intensity vs. hybridization free energy
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Where does cross-hybridization start?

* Classically referred to as the “minimum
nucleation length”

 We simulated hybridization of a few thousand
50mer probe-target pairs, permuting the
sequence of one binding partner so that only a
central, or terminal stretch of complementarity
remained

* |In simulations at 60C, we began to see >50% of
the pair form duplexes even with a central match
of 9nt. At 12 nt, 100% were in duplex form



Minimum nucleation, N-state model
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On the array: labeled target, alone...
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...and with perfect match competitor

25

20

15

10 —&— Central

Log2(Intensity)

Avg Bg

— PM

3 6 9 12 15 18 21 24

Match Length

Not as troubling for the technology as we thought 10 days ago —
but still points to the need for more accurate models



And at a lower temperature
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The implication is that melting temperatures calculated using modified solution-state
models may be as much as 10 degrees off




Target Secondary Structure

 Hypothesis: structure formation in the target
(ss cDNA or cRNA) has the potential to
compete with probe hybridization

* Predict dramatic binding differences over
sequence using OMP endpoint model
— Experiment 1: design multiple probes to modeled
folded and structure-free target regions; hybridize
to full-length target

— Experiment 2: construct simulated sheared target
fragments; hybridize (Weller)



Predictions:
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Preliminary conclusions:

* Hybridization efficiency does vary significantly
across the target
* |t's temperature dependent, as expected

* But the details of the prediction are totally
wrong



Kinetic model

* A generalized kinetic model that incorporates
both hybridization and unimolecular structure
formation is possible

* Physical models generally applied to
microarrays are special cases of this model



Multiplex competition
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Adding unimolecular competition
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Findings (2011)

* Solution hybridization models predict idealized
surface hybridization behavior rather well, but
fail (so far) unpredictably for non-ideal
duplexes

 BUT -- If we can model the situations that are
most likely to lead to problem probes or
problem interactions on the microarray, we

can discard data selectively and improve
results.



Biophysics-based data cleansing

 Measurement filtering:

— probes within linear range(200-20,000 f.u.) for
Affymetrix scanners and labeling

* Sequence and structure filtering:
— Matching sequence has known SNPs
— Probes cross-hybridize in the genome

— Stable probe or target internal structure lowers
availability for duplex

— Runs of Gs in the probe (4 or more - tetraloops?)
— T7 primer motifs

Thompson et al 2009 (BaFL pipeline)



Biophysics-based

Bhattacharjee Combined 37298_at

probeset cleansing
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This may not be as useful for the talk, it really has to do with what happens when you leave in the bad probes and let statistics ‘take care of it’.
We compare the same 325 ProbeSets. For RMA and dCHIP we have to let the algorithm use all of the probes, and we used the values delivered
by the algorithms, while with BaFL we just used the probes we approved and did a simple mean of the constituent intensities. Then we used a
non-linear methods to separate by sample class — it is far better with BaFL. This leads into the need for Arraylnitiative — just published — RMA
and dCHIP require the array description file (cdf) and there was no nice graphical tool for constructing them. Now there is.

Non Linear Reduction of 325 RMA ProbeSets
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