Towards the information entropy of DNA microarrays

Albrecht Ott

Universität des Saarlandes

The DMD – a dynamic photomask

- A glass, SiOH-moieties
- B silanization with APTES, NH₂ -moieties

C phosphorus dendrimers, aldehyde-moieties

adapted from Le Berre et al.

worked better than:

polyamidoamine (PAMAM) dendrimers

polyethylene glycol brushes (PEG on epoxysilane - GPTS)

monohydroxsilane

reduction with NaBH₄ hydroxyl-moieties

E oligonucleotide in situ synthesis

Resolution about 3 micrometer Reusable Array: 5€/experiment Reproducibility better than 20 % (uncorrected)

Point defect study

Look at all the

single base mismatches

including bulges

of a given sequence

Single base mismatch

Target 5'-AACTGAAAGCAAAGAC-3' 5'-AACTGAAAGCAAAGAC-3'

Single base bulge Probe 3'-TTGACTTTCGTTACTG-5' 3'-TTGACTTTCGTTTCTG-5'

Influence of the defect type and defect position on the hybridization signal intensity

Calculation of the (mismatched) nucleic acid duplex stability with the Nearest-Neighbor Model

$$= -10.52 \frac{\text{kcal}}{\text{mol}}$$

No positional influence !

Position Dependence & Molecular Zipping

Equilibrium: Double ended zipper partition function

$$Z_D = \sum_{k=0}^{N-1} \sum_{l=k+1}^{N} w_{k,l} = \sum_{k=0}^{N-1} \sum_{l=k+1}^{N} e^{\Delta G_{k,l}^{\circ}/RT}$$

 $\Delta G_{k,l}$ taken from bulk next neighbor energy tables

Binding constant for a single mismatch homopolymer

a) - f) different mismatch energies 0-5 kcal/mol

Array Signal vs Probe Length ($\sim \Delta G$)

Error rate of about 10%/base & zipping dynamics: observed Sips type isotherm

Zipping & 10% error/base

- Good agreement with experimental results
- ~1.5 kT energy penalty for the surface / bulk
- Can be mapped to Affymetrix array response and the PDNN (Position Dependent Next Neighbor) model

Loops: Experiment and Theory

(Preliminary Results)

Signal averaged over all loop positions (loop length)

Signal averaged over all loop lengths (loop position)

Results

• Synthesis Defects

... raise the "effective temperature" of DNA hybridization

... compress the dynamic range & reduce differences in melting temperatures

... need to be taken into account for modelling

Results

- Equilibrium thermodynamics from bulk does work well for description
- There are (important) limitations to the array due to the physics of DNA

Differentially expressed genes: results from three commercial microarray platforms.

Tan PK, Downey TJ, Spitznagel EL Jr, Xu P, Fu D et al., 2003. Nucleic Acids Res. 31: 5676–5684

- Determine the amount of information possibly transmitted by an ideal array as a function of conditions (DNA is the limiting factor)
- See how close you can come with a real array...

Conclusion

- DNA microarray hybridization intensities can be predicted using parameters from bulk at thermal equilibrium (in the considered simple cases)
- DNA microarray technology is limited by the physics of DNA hybridization (among others)
- Ongoing project: determine the physical limit and compare to real arrays

Conclusion

• DNA hybridization in competition may give unexpected results

Collaborators

- Thomas Naiser (now TU Munich)
- Christian Trapp
- Marc Schenkelberger, Timo Mai

Thank you for listening !