Spatial Human Cooperation
From theory to experiments ... and back!

Max Planck Institute Plön - 26 to 28 May 2014

MAX PLANCK INSTITUTE FOR EVOLUTIONARY BIOLOGY
PROGRAM FOR THE SPATIAL HUMAN COOPERATION WORKSHOP

Contents

1. General information 3
1.1. Travel 3
1.2. Dinner on Mon. 3
1.3. Social event 3
1.4. WiFi 3
2. Instruction for presenters 3
3. Introduction to Plön 4
4. Scientific program 5
5. Abstracts 6
5.1. Monday 6
5.2. Tuesday 8
5.3. Wednesday 10
6. Maps 14
6.1. From Plön train station to MPI 14
6.2. From Nordic hotel to MPI 15
6.3. From MPI to Pförtnerhaus 16
6.4. From MPI to Hotel Fegetasche (ferry departure point) 17
6.5. From Kasch (conference dinner) to Nordic hotel 18
7. List of participants 19
1. General information

1.1. Travel. Hamburg-Plön via public transport:
- via Kiel: From 0705am, an hourly shuttle-bus departures from Hamburg airport to Kiel. From Kiel, the train on Platform 1 usually goes to Lübeck (or Lüneburg) via Plön. The journey from Hamburg airport to Plön takes a little more than 2 hours.
- via Lübeck: Here you have to change twice. From Hamburg airport on Platform 2 take the Train S1 to Hamburg central station, then take the train on Platform 7b (sometimes on Platform 6) to Lübeck, from there take the train on Platform 6 to Plön.

We recommend you to check out your individual travel plan on the official website of DB (http://www.bahn.de/i/view/DEU/en/index.shtml).

1.2. Dinner on Mon.
- 0730pm, Pförtnerhaus Schloss Plön, Schloßgebiet 1, Plön, see the map on page 16.

1.3. Social event.
- 0500pm: Ferry departures at Hotel Fegetasche, see the map on page 17.
- 0600pm: Welcome drink at Landgasthof Kasch (adress: Landgasthof Kasch Dorfstraße 60, Timmdorf bei Malente).
- 0630pm: Conference dinner at Landgasthof Kasch.

When the event is over, we plan to have a nice walk to the hotel, see the map on page 18. In case you have issues with long walking distance, please let the organisers know ahead of the event.

1.4. WiFi.
- WiFi is accessible for “eduroam” users in the institute.
- Your name tag includes your individual WiFi access. That includes an ID, Login name, and Password. With that you can use the network “tmpi_guest”. Please also sign your WiFi ID in our participant list.

2. Instruction for presenters

There are two types of presentations at the workshop. The invited speakers talk for 45min including discussion, while the other participants talk for 15min including discussion. As our time table is quite dense, please understand that our chairman has to interfere if we are late on schedule.

- Please upload your presentation to our computer in the lecture hall, before the session in which you speak.
- We encourage you to use our computer to present (we have PDF viewer, Office 2007 on Windows and Keynote 6.2 on Mac OSX).
3. Introduction to Plön

Plön is the district seat of the Plön district in Schleswig-Holstein, Germany. It has about 8,700 inhabitants. Plön is almost an island in the middle of 5 different (but mostly connected) lakes. The biggest one, the Grosser Plöner See (Great Plön Lake) has a circumference of almost 40 kms. The town’s landmark is Plön Castle, a chateau built in the 17th century on a hill overlooking the town.

The town, nestled as it is in the rolling, wooded lake district of Holstein Switzerland (Holsteinische Schweiz), also has importance in the tourism industry. A morning walk around the Schöhsee behind the Max Planck Institute is recommendable (see below).

A walking route around the lake Schöhsee. It takes from 1 to 1.5 hours.
Scientific Program

<table>
<thead>
<tr>
<th>Time</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200-1355</td>
<td>Registration/Snack</td>
<td>1220-1320</td>
<td>Lunch at MPI</td>
</tr>
<tr>
<td>1355-1400</td>
<td>Welcoming Word</td>
<td>1320-1405</td>
<td>Szabó, György</td>
</tr>
<tr>
<td>1400-1445</td>
<td>Tarnita, Corina</td>
<td>1405-1420</td>
<td>Peña, Jorge</td>
</tr>
<tr>
<td>1445-1530</td>
<td>Tomassini, Marco</td>
<td>1420-1435</td>
<td>Wang, Zhen</td>
</tr>
<tr>
<td>1530-1550</td>
<td>Coffee break</td>
<td>1435-1455</td>
<td>Coffee break</td>
</tr>
<tr>
<td>1550-1635</td>
<td>Sánchez, Anxo</td>
<td>1455-1540</td>
<td>Moreno, Yamir</td>
</tr>
<tr>
<td>1635-1720</td>
<td>Grujić, Jelena</td>
<td>1540-1625</td>
<td>General discussion</td>
</tr>
<tr>
<td>1720-1735</td>
<td>Antonioni, Alberto</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1735-1750</td>
<td>Safarzynska, Karolina</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1750-1805</td>
<td>Galla, Tobias</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1915-1930</td>
<td>Transfer to alternate conference venue from MPI</td>
<td></td>
<td>Transfer to alternate conference venue from MPI</td>
</tr>
<tr>
<td>1930-</td>
<td>Scientific discussion with food</td>
<td></td>
<td>Scientific discussion with food</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5. Abstracts

5.1. Monday

Tarnita, Corina 1400-1445

Title: The evolution of social traits in network structured populations

Abstract: Over many decades theoretical biologists have grappled with the question of how to measure the relative selective advantage of different behavioral strategies. The various approaches to this question have fallen into one of the following categories: fixation probability of a mutant allele in a wild type population, some measures of gene frequency and gene frequency change, and a formulation of a different type of fitness called the inclusive fitness. Countless theoretical studies have examined the relationship between these approaches, and it has generally been thought that, under standard simplifying assumptions, they yield equivalent results. Most of this theoretical work, however, has assumed internal symmetry (homogeneity) of the population interaction structure – i.e., that all individuals are equivalent. I will explore the question of selective advantage in a general (heterogeneous) population and provide a mathematical framework within which the relationship between these measures of fitness becomes clear. I will show that, although appropriate measures of fixation probability and gene frequency change are equivalent, they are not in general equivalent to the inclusive fitness effect. In the process I will discuss recent results in evolutionary game theory and the evolution of cooperation.

Tomassini, Marco 1445-1530

Title: Mobility and Games: Simulation Models and Experiments

Sánchez, Anxo 1550-1635

Title: Moody conditional cooperation on spatially structured populations: experimental evidence and theoretical implications

Abstract: In the last few years several experiments have been carried out on the Prisoner’s Dilemma on spatially structured systems. In the first part of my talk, I will summarize the available results and present a re-analysis of them carried out to compare their conclusions and clarify what has been learnt. I will show that this analysis allows to conclude that, among the evolutionary update rules that have been proposed to explain the observations, only moody conditional cooperation is able to meet the task. Subsequently, in the second part of my talk, I will discuss how can such a behavior emerge evolutionarily. To that end, I will present a thorough simulation program in which a number of evolutionary dynamics are tested. The main conclusion is that only reinforcement learning is compatible with the emergence and stability of moody conditional cooperation. The combination of
the experimental and theoretical perspectives allows to narrow down the possible interpretations of experiments with spatially structured populations playing a Prisoner’s Dilemma.

Grujić, Jelena 1635-1720

Title: Testing network reciprocity in laboratory experiments with human subjects

Abstract: We present a series of laboratory experiments with human subjects designed to test the emergence of cooperation when humans play a Multiplayer Iterated Prisoner’s Dilemma on a spatial structure. We start with the experiment performed on the lattice whose size can be compared to those in simulations and then we turn to theoretical work, experiments without spatial structure and reanalysis of other spatial experiments. Surprisingly, or not, we find that in most experiments the cooperation level declines to an asymptotic state with low but nonzero cooperation (around 20%). The only exception is pairwise dilemmas where the behaviour of subjects is qualitatively different from the cases with more players, leading to a very high cooperation level. However, the strategy updates are distinct from the most popular models of evolutionary game theory and they do not lead to the promotion of cooperation on lattices. In all experiments we notice players that use what we call “moody” conditional cooperators.

Antonioni, Alberto 1720-1735

Title: Spatial Human Coordination (and Cooperation)

Abstract: Coordination among different options is key for a functioning and efficient society. However, often coordination failures arise, resulting in serious problems both at the individual and the societal level. An additional factor intervening in the coordination process is individual mobility, which takes place at all scales in our world, and whose effect on coordination is not well known. In this experimental work we study the behavior of people who play a pure coordination game in a spatial environment in which they can move around and when changing convention is costly. Participants are embedded in a virtual two-dimensional space and can only observe and interact with their current nearest neighbors. We find that in this situation, the population remains in its initial state, where each convention is adopted by half of the individuals. When we provide them with global information, i.e., the number of subjects currently adopting one of the convention, global consensus is reached in most (but not all) cases. Our results allow us to extract the heuristics used by the participants, which basically imply moving when most neighbors adopt the opposite convention, and changing convention only to match that of a large number of (local or global) partners. We have built a model based on those rules that agrees very well with the experiments and allows to extrapolate to large sizes, finding that with local information consensus is never possible. Our findings have important implications for policymakers intending to promote specific, desired behaviors in a mobile population.
Safarzynska, Karolina 1735-1750

Title: The coevolution of culture and environment

Abstract: We propose a model of multi level (group) selection in the presence of climate variability, where environment and culture coevolve. The model describes a population subdivided into groups, each with access to a renewable resource. Individuals employ different harvesting strategies: Defectors harvest more resources than cooperators and punishers. In groups with many defectors, resource extraction may exceed the level of sustainable harvests, causing resource exhaustion. Weather shocks accelerate resource scarcity and eliminate groups with many defectors. The model is used to study conditions under which resource conservation evolves. Conservation is costly but enhances groups chances of survival. We study conditions under which environmental crises enhance the evolution of cooperation. We examine how between-group interactions such as resource-conflict and harvest-sharing affect the probability of resource exhaustion.

Galla, Tobias 1750-1805

Title: Chaos in learning complex games

5.2. Tuesday

Ule, Aljaž 0900-0945

Title: Experiments and models of boundedly rational cooperation on networks

Abstract: A plethora of formal models has explored the conditions that promote the spread of cooperation through networks. These models are not often grounded in the empirical facts about the behavior that people exhibit in their networks, however. In this study we therefore present a behavioral model that is driven by the results of a laboratory experiment. We begin with a systematic experimental study of conditions that support or suppress cooperation in endogenous networks. We observe that, depending on the treatment conditions, experimental subjects may either form cohesive cooperative groups or descend into widespread freeriding. These treatment differences cannot be captured by the simple models of rational or myopic play. We therefore develop a new model of adaptive play with limited foresight that captures the key empirical results. The study suggests that, rather than the standard assumptions of myopic or rational decision making, people apply some but not perfect foresight in dynamic games.

Gross, Thilo 0945-1030

Title: TBA
Wardil, Lucas 1050-1135
Title: Network dynamics of cooperative actions
Abstract: Cooperative interactions arises out of individual actions like “I pay a cost to provide a benefit to you”. Instead of representing interactions as undirected links with individuals adopting cooperation or defection as strategies, we represent the costly action of providing a benefit as a direct link from the donor to the recipient. In this way the network represents the actions themselves instead of the interactions upon which cooperation actions take place. In other words, network encodes cooperation. We study network evolution where individuals are allowed to add and to remove direct links driven by imitation-like dynamics. Complementary we present some preliminary results of an experiment designed to probe some assumptions of the theoretical model.

Lenaerts, Tom 1135-1220
Title: Evolutionary dynamics of partner selection in gift giving games

Szabó, György 1320-1405
Title: Anatomy of matrix games
Abstract: In theoretical and experimental investigations the multi-agent matrix games are generally studied within a range of parameters characteristic to the elements of a payoff matrix. Now we discuss other ways of the decomposition of games/interactions. Accordingly, the symmetric 2x2 games can be decomposed into components resembling the nearest neighbour interaction and and external field of the magnetic Ising model. As a straightforward extension of this approach we will study the Fourier components of the 3x3 matrix games. From this point of view we can get a deeper insight into the nature of games. Additionally, this approach indicates clearly the intrinsic symmetries built into the matrix games and separates the components described well by the physical models.

Peña, Jorge 1405-1420
Title: Evolution of collective action in Wright’s island model
Abstract: We study the evolutionary dynamics of general symmetric $n \times 2$ (n-person, 2-strategy) matrix games in pure (discrete) strategies in a population structured according to Wright’s infinite island model. We make use of a separation of time scales argument and a well-known approximation of the stationary distribution of local frequencies in the infinite island model to derive a replicator-like equation describing the change in global frequency of strategies. By making use of such equation we provide several results. First, we provide general stability conditions for monomorphic states. Second, we reconfirm Taylor’s (1992) famous result (according to which the benefit of cooperation is exactly canceled out by the cost of increased kin competition) for non-overlapping generations and social
dilemmas modeled as prisoner’s dilemmas. Finally, we analyze the evolutionary dynamics of a threshold public goods game (possibly the simplest example of a non-linear social dilemma) and find that, for non-overlapping generations and depending on the (payoff) cost-to-benefit ratio, population structure can be either beneficial or detrimental to the evolution cooperation.

Wang, Zhen 1420-1435
Title: Interdependent Network Reciprocity in Evolutionary Games
Abstract: Besides the structure of interactions within networks, also the interactions between networks are of the outmost importance. We therefore study the outcome of the public goods game on two interdependent networks that are connected by means of a utility function, which determines how payoffs on both networks jointly influence the success of players in each individual network. We show that an unbiased coupling allows the spontaneous emergence of interdependent network reciprocity, which is capable to maintain healthy levels of public cooperation even in extremely adverse conditions. The mechanism, however, requires simultaneous formation of correlated cooperator clusters on both networks. If this does not emerge or if the coordination process is disturbed, network reciprocity fails, resulting in the total collapse of cooperation. Network interdependence can thus be exploited effectively to promote cooperation past the limits imposed by isolated networks, but only if the coordination between the interdependent networks is not disturbed.

Moreno, Yamir 1455-1540
Title: Recent experiments on Humans Playing a Prisoner’s Dilemma: age and reputation effects
Abstract: In this talk, we discuss the results of two recent experiments aimed at studying the effects of two factors that have remained unexplored. First, we report results of a lab-in-the-field experiment, where people of different ages and backgrounds participated in four-player Prisoners Dilemmas. We find that there is a transition from innate selfishness to prosocial behavior during adolescence and a second one for the eldest participants. Secondly, we report on a set of laboratory experiments where groups of people play an iterated prisoners dilemma on a network, whose links they can break and form at will. These experiments focus on a key ingredient when one studies cooperation in structured populations: reputation. We show that only when the past actions of the potential partners are shown, cooperation is enhanced, which suggests that incorporating reputation in social networks may be mandatory.

5.3. Wednesday
Semman, Dirk 0900-0945
Title: TBA

Bednarik, Peter 0945-1000
Title: Costs for switching social partners reduces network dynamics but not cooperative behavior

Abstract: We have conducted an experiment that allowed players to change their social ties and included varying costs for building new ties. As predicted, individuals were much less likely to break and form social ties when this entailed costs. Surprisingly, the cooperation levels were not affected by the introduction of costs despite of vastly reduced tie-breaking dynamics. Especially when costs were high, very few social ties were broken. Even though the network was almost static, the achieved cooperation was much higher compared to a completely static setting. In our experimental setting the potential choice to quit collaboration, even if very costly, is sufficient to significantly increase cooperation among humans.

Yanagisawa, Daichi 1000-1015
Title: Evolution and maintenance of cooperative avoiding behavior in bidirectional flow

Abstract: We have proposed a one-dimensional cellular-automaton model for bidirectional flow of self-driven particles and investigated evolution and maintenance of cooperative avoiding behavior. In our model, there are two kinds of particles, which are right-going particles and left-going particles. Since the model is one dimension, they often face opponent particles. In order to avoid conflicts, particles try to avoid their opponents by swerving to right or left stochastically. If their swerving directions agree, the two particles avoid conflicts and exchange their position with each other. Particles in our model have a tendency parameter of swerving direction. It is enforced and weakened when the particles succeed or fail to avoid opponent particles, respectively. Results of our simulation indicate that cooperative avoiding behavior is achieved, i.e., swerving directions of the particles are unified, when the density of particles is large. Furthermore, in the case that right-going particles occupy the majority of the system, we observe that their flux increases when the number of left-going particles, which prevent the smooth movement of right-going particles, becomes large. This is because the opportunity of reinforcement learning is increased by the increase of left-going particles. Application of our research will be useful to study evolution and maintenance of cooperative avoiding behavior in pedestrian dynamics.

Han, The Anh 1015-1030
Title: Evolutionary Dynamics of Commitments
Abstract: When starting a new collaborative endeavor, it pays to establish upfront how strongly your partners commit to the common goal and what compensation can be expected in case the collaboration is violated. Diverse examples in biological and social contexts have demonstrated the pervasiveness of making prior agreements on posterior compensations, suggesting that this behavior could have been shaped by natural selection. Here, we analyze the evolutionary relevance of such a commitment strategy in two-player and multi-player settings. We show that when the cost of arranging a commitment deal lies within certain limits, substantial levels of cooperation can be achieved, especially when one insists on sharing the arrangement cost. Moving to multi-player games, an intermediate optimal level of group commitment emerges depending both on the dilemma at stake and the cost of arranging the commitment. Our results are in accordance with recent behavioral experiments of group commitments.

Requejo, Rubén 1050-1105
Title: Multiplex public goods games with environmental layers.
Abstract: I will shortly discuss the ongoing research on the public goods game embedded in a multiplex structure, in which the strategies have different diffusive patterns, and an environmental layer allows for external—to the game—effects to influence the dynamics, such as resource fluxes and different habitat qualities.

Stehlik, Petr 1105-1120
Title: Evolutionary Games on Graphs and Dynamical Systems
Abstract: In this talk, we discuss rigorous mathematical approach to evolutionary games on graphs. Our dynamical systems notions enable us to study certain properties of attractors and their dependence on graph properties. Moreover, we provide sufficient conditions for existence and In this talk, we discuss rigorous mathematical approach to evolutionary games on graphs. Our dynamical systems notions enable us to study certain properties of attractors and their dependence on graph properties. Moreover, we provide sufficient conditions for existence and In this talk, we discuss rigorous mathematical approach to evolutionary games on graphs. Our dynamical systems notions enable us to study certain properties of attractors and their dependence on graph properties. Moreover, we provide sufficient conditions for existence and non-existence of fixed-points and periodic trajectories. Finally, we discuss number of fixed-points and periodic trajectories.

Martinez Vaquero, Luis 1120-1135
Title: Promotion of cooperation through commitments in repeated games
Abstract: We propose a model in the framework of the Iterated Prisoner Dilemma where individuals can make agreements in order to ensure future cooperation. We study under
which circumstances these commitments are evolutionary successful both leading to an increase of the global cooperation level and avoiding the exploitation by other strategies. We also analyse an apology-forgiveness scheme as an internal mechanism to resolve conflicts when the commitment is not honoured.

Zhang, Boyu 1135-1150

Title: Network structure promotes social diversity in the ultimatum game

Abstract: In the ultimatum game, two players divide a sum of money. The proposer suggests how to split and the responder can accept or reject. The rational solution is that the responder accepts even the smallest offer but people in real world prefer fair share. Theoretical studies have revealed that spatial structure can considerably affect the evolution of fairness: ultimatum game on graphs may evolve to much fairer outcomes compared with random encounter setting. Here we describe an experiment which tests this prediction. We find that network structures have little effect on the mean value of the offers, but significantly increase the variance. In particular, the clusters of both fair offers and low offers are observed. Basically, our experiment shows that network structure does not promote fairness, but promote social diversity.
6. Maps

6.1. From Plön train station to MPI.

![Map of Plön train station to MPI](http://maps.google.de/)
6.2. From Nordic hotel to MPI.

Walk 1.2 km, 15 min

Directions from Max Planck Institute for Evolutionary Biology to Nordic Hotel Plön

1. Head south on August-Thienemann-Straße

2. Turn left toward Rautenbergstraße/B76

3. Turn left onto Rautenbergstraße/B76

4. Slight left to stay on Rautenbergstraße/B76

5. Turn left onto Ölmühlenallee

Destination will be on the left

Nordic Hotel Plön
Ölmühlenallee 3, 24306 Plön
6.3. From MPI to Pförtnerhaus.
6.4. From MPI to Hotel Fegetasche (ferry departure point).

Walk 1.4 km, 18 min

Directions from Max Planck Institute for Evolutionary Biology to Hotel Fegetasche

1. Head south on August-Thienemann-Straße
 - 49 m
2. Turn left toward Rautenbergstraße/B76
 - 70 m
3. Turn left onto Rautenbergstraße/B76
 - 650 m
4. Slight right to stay on Rautenbergstraße/B76
 - Continue to follow B76
 - Destination will be on the left

Hotel Fegetasche

Use caution - may involve errors or sections not suited for walking

Max Planck Institute for Evolutionary Biology
August-Thienemann-Straße 2, 24306 Plön, Germany

Hotel Fegetasche
Fegetasche 1, 24306 Plön, Germany
6.5. From Kasch (conference dinner) to Nordic hotel.
7. List of participants

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abou Chakra, Maria</td>
<td>MPI Plön</td>
</tr>
<tr>
<td>Antonioni, Alberto</td>
<td>University of Lausanne</td>
</tr>
<tr>
<td>Bauer, Benedikt</td>
<td>MPI Plön</td>
</tr>
<tr>
<td>Bednarik, Peter</td>
<td>University of Göttingen</td>
</tr>
<tr>
<td>Funk, Sebastian</td>
<td>University of London</td>
</tr>
<tr>
<td>Galla, Tómas</td>
<td>University of Manchester</td>
</tr>
<tr>
<td>Gokhale, Chaitanya</td>
<td>Massey University</td>
</tr>
<tr>
<td>Gross, Thilo</td>
<td>University of Bristol</td>
</tr>
<tr>
<td>Grujić, Jelena</td>
<td>Imperial College London</td>
</tr>
<tr>
<td>Han, The Anh</td>
<td>Vrije Universiteit Brussel</td>
</tr>
<tr>
<td>Hindersin, Laura</td>
<td>MPI Plön</td>
</tr>
<tr>
<td>Huang, Weini</td>
<td>MPI Plön</td>
</tr>
<tr>
<td>Lenaerts, Tom</td>
<td>Université Libre de Bruxelles</td>
</tr>
<tr>
<td>Lerat, Jean-Sébastien</td>
<td>Université Libre de Bruxelles</td>
</tr>
<tr>
<td>Li, Xiangyi</td>
<td>MPI Plön</td>
</tr>
<tr>
<td>Martínez Vaquero, Luis</td>
<td>Vrije Universiteit Brussel</td>
</tr>
<tr>
<td>Moreno, Yamir</td>
<td>University of Zaragoza</td>
</tr>
<tr>
<td>Peña, Jorge</td>
<td>MPI Plön</td>
</tr>
<tr>
<td>Requejo, Rubén</td>
<td>Universitat de Barcelona</td>
</tr>
<tr>
<td>Safarzynska, Karolina</td>
<td>Vienna University of Economics and Business</td>
</tr>
<tr>
<td>Sánchez, Anxo</td>
<td>Universidad Carlos III de Madrid</td>
</tr>
<tr>
<td>Semman, Dirk</td>
<td>University of Göttingen</td>
</tr>
<tr>
<td>Song, Yixian</td>
<td>MPI Plön</td>
</tr>
<tr>
<td>Stehlík, Petr</td>
<td>University of West Bohemia</td>
</tr>
<tr>
<td>Szabó, György</td>
<td>Hungarian Academy of Sciences</td>
</tr>
<tr>
<td>Tarnita, Corina</td>
<td>Princeton University</td>
</tr>
<tr>
<td>Tomassini, Marco</td>
<td>University of Lausanne</td>
</tr>
<tr>
<td>Traulsen, Arne</td>
<td>MPI Plön</td>
</tr>
<tr>
<td>Ule, Aljaž</td>
<td>University of Amsterdam</td>
</tr>
<tr>
<td>Wang, Zhen</td>
<td>Hong Kong Baptist University</td>
</tr>
<tr>
<td>Wardil, Lucas</td>
<td>University of British Columbia</td>
</tr>
<tr>
<td>Werner, Benjamin</td>
<td>MPI Plön</td>
</tr>
<tr>
<td>Wu, Bin</td>
<td>MPI Plön</td>
</tr>
<tr>
<td>Yanagisawa, Daichi</td>
<td>Ibaraki University of Japan</td>
</tr>
<tr>
<td>Zhang, Boyu</td>
<td>Beijing Normal University</td>
</tr>
<tr>
<td>Zisis, Ioannis</td>
<td>Vrije Universiteit Brussel</td>
</tr>
</tbody>
</table>