
Citation: An, X.; Dong, Y.; Wang, X.;

Zhang, B. Cooperation and

Coordination in Threshold Public

Goods Games with Asymmetric

Players. Games 2023, 14, 76.

https://doi.org/10.3390/g14060076

Academic Editors: Ulrich Berger and

Richard McLean

Received: 10 November 2023

Revised: 5 December 2023

Accepted: 13 December 2023

Published: 17 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

games

Article

Cooperation and Coordination in Threshold Public Goods
Games with Asymmetric Players
Xinmiao An 1,†, Yali Dong 2,†, Xiaomin Wang 1,† and Boyu Zhang 1,*,†

1 Laboratory of Mathematics and Complex Systems, Ministry of Education, School of Mathematical Sciences,
Beijing Normal University, Beijing 100875, China; 201931130034@mail.bnu.edu.cn (X.A.);
wangxiaomin@mail.bnu.edu.cn (X.W.)

2 School of Systems Science, Beijing Normal University, Beijing 100875, China; dongyali@bnu.edu.cn
* Correspondence: zhangby@bnu.edu.cn
† These authors contributed equally to this work.

Abstract: In this paper, we study cooperation and coordination in a threshold public goods game
with asymmetric players where players have different endowments ei, productivities pi, and rewards
ri. In general, this game has a defective Nash equilibrium (NE), in which no one contributes, and
multiple cooperative NEs, in which the group’s collective contribution equals the threshold. We then
study how multiple dimensions of inequality influence people’s cooperation and coordination. We
show that heterogeneity in ei pi can promote cooperation in the sense that the existence condition
of the defective NE becomes stricter. Furthermore, players with higher ei pi are likely to contribute
more at a cooperative NE in terms of collective contribution (i.e., absolute contribution multiplied
by productivity).

Keywords: threshold public goods game; asymmetric game; cooperation; coordination

1. Introduction

Exploring cooperation and coordination stands out as a fundamental application of
game theory. This field seeks to elucidate which mechanisms drive cooperative behavior
and how individuals coordinate towards a more efficient equilibrium. Much of the existing
work in this field considers homogeneous populations. However, inequality is ubiquitous
in humans. Individuals often vary in their endowments, productivities, shares of rewards,
and social hierarchy positions. Asymmetric games raise many exciting questions that are
difficult to tackle within the standard setup of symmetric games. For example, what is the
impact of various forms of inequality on cooperation and coordination? Does endowment
inequality make cooperation and coordination more difficult than productivity inequality?
How do individuals coordinate when they differ in multiple dimensions?

The existing literature suggests that the effect of inequality on cooperation is nontrivial.
A considerable number of studies based on public goods games has found that endowment
inequality tends to reduce cooperation [1–3] but that asymmetric productivities and the
sharing of public goods tend to positively influence contributions or maintain a neutral
impact [4–7]. In addition, in cases of both endowment and productivity heterogeneity,
optimal cooperation is achieved when individuals with a higher productivity also possess
greater endowments [8].

In contrast, the interaction between inequality and coordination has attracted less
attention. In this paper, we discuss this issue within the framework of a simple coordination
game, a threshold public goods game (TPGG). In a TPGG, individuals derive benefits
from contributing to a public good only when their total collective contributions (i.e.,
absolute contribution multiplied by productivity) reach a certain threshold [9–11]. In
general, a threshold public goods game tends to have many equilibria, including a defective
equilibrium in which no contributions are made and a set of cooperative equilibria in
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which the group’s collective contribution exactly meets the threshold [9,11]. A cooperative
equilibrium is more efficient than a defective equilibrium; therefore, everyone has the
motivation to achieve the threshold. However, different players may prefer different
cooperative equilibria. They may prefer other group members to contribute more, allowing
them to contribute less, thereby leading to a nontrivial coordination problem.

When the TPGG is symmetric, i.e., all players have the same endowment, productivity,
and share of the reward, a natural solution is that all the players contribute the same
amount of their endowment to the public good. However, when the TPGG is asymmet-
ric, experimental studies have demonstrated a negative effect of endowment inequality
on coordination1: while rich subjects often make higher contributions compared to the
symmetric case, the much less contributions from the poor lead to an overall decrease in
the total collective contribution in the asymmetric scenario [11–13]. In contrast, it seems
that productivity inequality does not have a significant effect [11]. The effect of inequality
on cooperation and coordination has also been investigated in a variation of the TPGG,
the climate game (also known as the collective-risk dilemma game) [14]. Experiments
have found that achieving coordination is hindered more by endowment inequality than
by productivity inequality [15–18]. Furthermore, the effects of multiple inequalities on
coordination are generally more complex [19].

Most of the existing studies on asymmetric TPGGs have considered two types of
players with only one source of asymmetry: they either differ in endowments or in pro-
ductivities2. It is not clear how multiple dimensions of inequality influence people’s
cooperation and coordination in large groups. In this paper, we consider an n-player
asymmetric TPGG where players have different endowments, productivities, and rewards.
We focus on the following two questions:

• What is the impact of various forms of inequality on cooperation?
• How do people coordinate when group members differ among multiple dimensions?

We investigate the impact of various forms of inequality on cooperation by examining
the existence conditions of Nash equilibria. Furthermore, to analyze the coordination
among players with multidimensional differences, we quantify the size of cooperative
NE subset in which a specific player makes the largest relative, absolute, or collective
contribution.

Section 2 provides a detailed description of the asymmetric TPGG model. In Section 3,
two theorems are presented to address the two key questions. Section 4 conducts a nu-
merical analysis, illustrating the theoretical findings with concrete examples. Conclusive
remarks are given in Section 5.

2. Model

Let us consider a threshold public goods game (TPGG) with n asymmetric players.
Each player i (with i = 1, . . . , n) starts with some endowment, meaning ei > 0. Then, each
player independently decides which fraction xi of their endowment to contribute to the
public good. Each player’s contribution is multiplied by a productivity factor pi. We refer
to xi, eixi, and ei pixi as player i’s relative contribution, absolute contribution, and collective
contribution, respectively [11]. If the total collective contribution of the n players reaches
a predefined threshold θ, then each player i obtains a reward ri along with their remaining
endowment. Otherwise, the players only receive their remaining endowment. As a result,
the players’ payoffs are as follows:

fi(x) =
{

ei(1 − xi) + ri, if ∑n
i=1 ei pixi ≥ θ,

ei(1 − xi), if ∑n
i=1 ei pixi < θ.

This game can have various kinds of heterogeneities with respect to endowment ei,
productivity pi, and reward ri. To compare the impact of various forms of inequality, we
assume ∑n

i=1 ei pi = G and ∑n
i=1 ri = R, i.e., the maximum amount of group collective
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contribution and the total amount of reward are fixed. Furthermore, we assume ri ≥ ei for
all i = 1, 2, . . . , n, i.e., the social welfare is improved if the group reaches the threshold3.

3. Results

In general, an asymmetric TPGG has two types of NE. First, there is a set of cooperative
NEs in which the total collective contribution exactly meets the threshold. In addition,
there may exist a defective NE in which all the players choose not to contribute. Theorem 1
provides the existence conditions for the two types of NE (see Appendix A for the proof).

Theorem 1. The defective NE, x = 0, exists if and only if, for any player i, (1) θ > ei pi or (2)
θ = ei pi and ri = ei. In contrast, a cooperative NE (i.e., at least one player contributes to the
public good) exists if and only if 0 < θ ≤ G. In addition, the set of cooperative NEs has the form
{x|∑n

i=1 ei pixi = θ }.

Theorem 1 reveals the impact of various inequalities on cooperation from the per-
spective of NE. It indicates that individual differences have no effect on the existence of
a cooperative NE. The cooperative NE set is not empty if and only if the maximum amount
of group collective contribution is not less than the threshold. We then analyze the effect
of heterogeneity on the defective NE by assuming ri > ei (i.e., the critical case ri = ei is
excluded). For the symmetric case, the existence condition of the defective NE can be
simplified as θ > G

n . For the asymmetric case, the defective NE exists if and only if θ > ei pi
for all players. Without a loss of generality, we consider that players differ in ei pi, with
e1 p1 > e2 p2 . . . > en pn (i.e., player 1 is the most ‘able’ player). In this case, the defective

NE exists if and only if θ > e1 p1. Let us note that e1 p1 > ∑n
i=1 ei pi

n = G
n , and the existence

condition of the defective NE becomes stricter than that in the symmetric case. This implies
that heterogeneity in ei pi has a positive impact on cooperation. In particular, defection
ceases to be an NE when e1 p1 ≥ θ because, in this case, player 1 is motivated to contribute
even if all the other players defect.

Theorem 1 also shows that, when 0 < θ < G, the game has an infinite number of
cooperative NEs. In all these equilibria, the group collective contribution reaches the thresh-
old (i.e., ∑n

k=1 ek pkxk = θ); yet, they vary in how the contributions are distributed among
the players. We then analyze which player contributes more to a cooperative NE in the
presence of asymmetries. We note that there are three measures of individual contribution,
namely, relative contribution, absolute contribution, and collective contribution. We denote
the subsets of the cooperative NE set where player i has the highest relative contribution,
absolute contribution, and collective contribution by S1

i , S2
i , and S3

i , respectively, and we
denote their sizes (under the Hausdorff measure) by

∣∣S1
i

∣∣, ∣∣S2
i

∣∣, and
∣∣S3

i

∣∣, respectively. Intu-

itively,
∣∣∣Sk

i

∣∣∣ > ∣∣∣Sk
j

∣∣∣ for all j ̸= i (k = 1, 2, 3) means that player i is more likely to contribute
most at a randomly chosen cooperative NE in terms of the relative, absolute, or collective
contribution4. Theorem 2 compares the sizes of the different subsets (see Appendix B for
the proof).

Theorem 2. Let us suppose that e1 p1 > e2 p2 . . . > en pn.

(1) For relative contribution,
∣∣S1

1

∣∣ < . . . <
∣∣S1

n
∣∣ if 0 < θ < en pn, and

∣∣S1
1

∣∣ > . . . >∣∣S1
n
∣∣ if ∑n−1

i=1 ei pi < θ < G.
(2) For absolute contribution, when there is endowment heterogeneity, i.e., e1 > . . . > en and

p1 = . . . = pn,
∣∣S2

1

∣∣ ≥ . . . ≥
∣∣S2

n
∣∣ for all 0 < θ < G. When there is productivity

heterogeneity, i.e., e1 = . . . = en and p1 > . . . > pn,
∣∣S2

1

∣∣ < . . . <
∣∣S2

n
∣∣ if 0 < θ <

en pn, and
∣∣S2

1

∣∣ > . . . >
∣∣S2

n
∣∣ if ∑n−1

i=1 ei pi < θ < G.
(3) For collective contribution,

∣∣S3
1

∣∣ ≥ . . . ≥
∣∣S3

n
∣∣ for all 0 < θ < G. Furthermore,

∣∣S3
1

∣∣ = . . . =∣∣S3
n
∣∣ if 0 < θ < en pn.
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Theorem 2 summarizes the contribution patterns in cooperative NEs when group
members differ across multiple dimensions. First, ‘able’ players (i.e., players with larger
ei pi) are likely to make higher collective contributions in the sense that

∣∣S3
i

∣∣ ≥
∣∣∣S3

j

∣∣∣ if
ei pi > ej pj. In addition, if the threshold is sufficiently low such that any single player is able
to achieve it, then all players are equally likely to make the highest collective contribution
in a cooperative NE, irrespective of their abilities. Second, ‘able’ players are likely to have
higher relative contributions only for large threshold, where successfully reaching the
threshold requires the joint efforts of all players. However, for sufficiently low threshold,
‘able’ players tend to make smaller relative contributions. Finally, the results for absolute
contribution depend on both ei and pi. When there is endowment inequality, the players
with higher endowments are likely to contribute more for all thresholds. However, when
there is productivity inequality, the more productive players are likely to contribute more
only for large threshold.

4. Numerical Analysis

Theorems 1 and 2 qualitatively analyze the effect of various forms of inequality on
cooperation and coordination. In particular, Theorem 2 compares the relative sizes of Sk

i
for low thresholds (i.e., 0 < θ < en pn) and high thresholds (i.e., ∑n−1

i=1 ei pi < θ < G). In
order to enhance the comprehension of the two theorems, we calculate the Nash equilibria
and absolute sizes of the three types of subsets S1

i , S2
i , and S3

i for two-player threshold
public goods games with all 0 < θ < G. Inspired by [8], we consider five scenarios,
namely, full equality, endowment inequality, productivity inequality, aligned inequality,
and misaligned inequality. Full equality corresponds to a homogeneous scenario, whereas
in the endowment inequality and productivity inequality scenarios players only differ
in a single dimension. In the last two scenarios, players differ in two dimensions: in the
aligned inequality scenario, both advantages concentrate in one player, with the high-
endowment player being more productive, while in the misaligned inequality scenario
these two advantages distribute across two players, meaning the high-endowment player
is less productive. Furthermore, e1 p1 = e2 p2 = 30 in the full equality and misaligned
inequality scenarios; e1 p1 = 40, e2 p2 = 20 in the endowment inequality and productivity
inequality scenarios, and e1 p1 = 48, e2 p2 = 12 in the aligned inequality scenario. Detailed
parameter settings for ei and pj can be found in the first column of Table 1 (G = 60 and
r1 = r2 = 45 in all five scenarios). For each scenario, the threshold θ is categorized into
three ranges according to Theorem 2, i.e., low thresholds 0 < θ < e2 p2, intermediate
thresholds e2 p2 ≤ θ ≤ e1 p1, and high thresholds e1 p1 < θ < G.

We first study the effect of inequality on cooperation. Theorem 1 says that heterogene-
ity in ei pi can promote cooperation in the sense that the existence condition of the defective
NE becomes stricter. From Table 1, the existence conditions of the defective NE in the full
equality, endowment inequality, productivity inequality, aligned inequality, and misaligned
inequality scenarios are θ > 30, θ > 40, θ > 40, θ > 48, and θ > 30, respectively. This
shows clearly that the existence condition of the defective NE is harder to satisfy when
heterogeneity in ei pi increases.

We then analyze the set of cooperative NEs. Figure 1 shows the set of cooperative NEs
for different game scenarios and thresholds θ. For a two-player threshold public goods
game, the set of cooperative NEs is a line segment in the x1-x2 plane with slope − e1 p1

e2 p2
.

Furthermore, the length of the line segment (which measures the size of the cooperative NE
set) does not change monotonically in the threshold: it first increases and then decreases as
θ increases from 0 to G.
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Table 1. Nash equilibria and sizes of Sk
i in two-player threshold public goods games. Column

1: Five game scenarios are considered, namely, full equality, endowment inequality, productivity
inequality, aligned inequality, and misaligned inequality. Column 2: For each scenario, the threshold
θ is categorized into three ranges according to Theorem 2. Column 3: The cooperative NE set is
non-empty for all parameter combinations, and the defective NE exists only for high thresholds.

Columns 4–6: Absolute sizes of the three sets S1
i , S2

i , and S3
i . The size relationship between

∣∣∣Sk
1

∣∣∣
and

∣∣∣Sk
2

∣∣∣ is marked using different colors. Red:
∣∣∣Sk

1

∣∣∣ > ∣∣∣Sk
2

∣∣∣. Black:
∣∣∣Sk

1

∣∣∣ = ∣∣∣Sk
2

∣∣∣. Blue:
∣∣∣Sk

1

∣∣∣ < ∣∣∣Sk
2

∣∣∣.
Grey: the relationship between

∣∣∣Sk
1

∣∣∣ and
∣∣∣Sk

2

∣∣∣ depends on θ. Three cells are highlighted. In these cells,∣∣S3
1

∣∣ > ∣∣S3
2
∣∣ for almost all θ. The exceptions are θ = 20 in the first two cells and θ = 12 in the last cell.

(e1,e2,p1,p2) Threshold NE (|S1
1|,|S1

2|) (|S2
1|,|S2

2|) (|S3
1|,|S3

2|)

Full equality
(30, 30, 1, 1)

0 < θ < 30 x1 + x2 = θ
30

(√
2θ

60 ,
√

2θ
60

) (√
2θ

60 ,
√

2θ
60

) (√
2θ

60 ,
√

2θ
60

)
θ = 30 x1 + x2 = 1

(√
2

2 ,
√

2
2

) (√
2

2 ,
√

2
2

) (√
2

2 ,
√

2
2

)
30 < θ < 60 x1 + x2 = θ

30 ;
x1 = x2 = 0

(√
2 −

√
2θ

60 ,
√

2 −
√

2θ
60

) (√
2 −

√
2θ

60 ,
√

2 −
√

2θ
60

) (√
2 −

√
2θ

60 ,
√

2 −
√

2θ
60

)

Endowment
inequality
(40, 20, 1, 1)

0 < θ < 20 2x1 + x2 = θ
20

(√
5θ

120 ,
√

5θ
60

) (√
5θ

80 ,
√

5θ
80

) (√
5θ

80 ,
√

5θ
80

)
20 ≤ θ ≤ 40 2x1 + x2 = θ

20

(√
5θ

120 ,
√

5
2 −

√
5θ

120

) (√
5θ

80 ,
√

5
2 −

√
5θ

80

) (√
5θ

80 ,
√

5
2 −

√
5θ

80

)
40 < θ < 60 2x1 + x2 = θ

20 ;
x1 = x2 = 0

(√
5 −

√
5θ

60 ,
√

5
2 −

√
5θ

120

) (
3
√

5
2 −

√
5θ

40 , 0
) (

3
√

5
2 −

√
5θ

40 , 0
)

Productivity
inequality
(20, 20, 2, 1)

0 < θ < 20 2x1 + x2 = θ
20

(√
5θ

120 ,
√

5θ
60

) (√
5θ

120 ,
√

5θ
60

) (√
5θ

80 ,
√

5θ
80

)
20 ≤ θ ≤ 40 2x1 + x2 = θ

20

(√
5θ

120 ,
√

5
2 −

√
5θ

120

) (√
5θ

120 ,
√

5
2 −

√
5θ

120

) (√
5θ

80 ,
√

5
2 −

√
5θ

80

)
40 < θ < 60 2x1 + x2 = θ

20 ;
x1 = x2 = 0

(√
5 −

√
5θ

60 ,
√

5
2 −

√
5θ

120

) (√
5 −

√
5θ

60 ,
√

5
2 −

√
5θ

120

) (
3
√

5
2 −

√
5θ

40 , 0
)

Aligned
inequality
(24, 12, 2, 1)

0 < θ < 12 4x1 + x2 = θ
12

(√
17θ

240 ,
√

17θ
60

) (√
17θ

144 ,
√

17θ
72

) (√
17θ
96 ,

√
17θ
96

)
12 ≤ θ ≤ 48 4x1 + x2 = θ

12

(√
17θ

240 ,
√

17
4 −

√
17θ

240

)  min
{√

17θ
144 ,

√
17
4

}
,

max
{√

17
4 −

√
17θ

144 , 0
}  min

{√
17θ
96 ,

√
17
4

}
,

max
{√

17
4 −

√
17θ
96 , 0

}
48 < θ < 60 4x1 + x2 = θ

12 ;
x1 = x2 = 0

(√
17 −

√
17θ
60 ,

√
17
4 −

√
17θ

240

) (
5
√

17
4 −

√
17θ
48 , 0

) (
5
√

17
4 −

√
17θ
48 , 0

)

Misaligned
inequality
(30, 15, 1, 2)

0 < θ < 30 x1 + x2 = θ
30

(√
2θ

60 ,
√

2θ
60

) (√
2θ

45 ,
√

2θ
90

) (√
2θ

60 ,
√

2θ
60

)
θ = 30 x1 + x2 = θ

30

(√
2

2 ,
√

2
2

) (
2
√

2
3 ,

√
2

3

) (√
2

2 ,
√

2
2

)
30 < θ < 60 x1 + x2 = θ

30 ;
x1 = x2 = 0

(√
2 −

√
2θ

60 ,
√

2 −
√

2θ
60

) max
{√

2 −
√

2θ
90 , 2

√
2 −

√
2θ

30

}
,

max
{√

2 −
√

2θ
45 , 0

} (√
2 −

√
2θ

60 ,
√

2 −
√

2θ
60

)

Columns 4–6 in Table 1 show the (absolute) sizes of the three sets S1
i , S2

i , and S3
i for

different game scenarios and ranges of θ. Overall, the difference between the sizes of the
two cooperative NEs sets,

∣∣∣Sk
1

∣∣∣− ∣∣∣Sk
2

∣∣∣, expands as θ increases for all k = 1, 2, 3. In other
words, higher thresholds result in an increased probability that the more ‘able’ player
makes a greater contribution at a randomly chosen cooperative NE. However, the size
relationship between

∣∣∣Sk
1

∣∣∣ and
∣∣∣Sk

2

∣∣∣ depends crucially on ei, pi, θ, and the contribution type.
For relative contribution, as pointed out in Theorem 2(1), in game scenarios with

heterogeneity in ei pi (i.e., the endowment inequality, productivity inequality, and aligned
inequality scenarios), the size of

∣∣S1
1

∣∣ is less than
∣∣S1

2

∣∣ for low thresholds 0 < θ < e2 p2,
whereas the opposite is true for high threshold e1 p1 < θ < G. In addition, for intermediate
thresholds e2 p2 ≤ θ ≤ e1 p1, the size of

∣∣S1
1

∣∣ (or
∣∣S1

2

∣∣) is increasing (or decreasing) in θ. In
contrast, in game scenarios without heterogeneity in ei pi (i.e., the full equality and mis-
aligned inequality scenarios),

∣∣S1
1

∣∣ = ∣∣S1
2

∣∣ for all θ. For collective contribution, Theorem 2(3)
predicts

∣∣S3
1

∣∣ = ∣∣S3
2

∣∣ for low thresholds 0 < θ < e2 p2. This is indeed the case. Furthermore,
we observe

∣∣S3
1

∣∣ > ∣∣S3
2

∣∣ for the intermediate and high thresholds e2 p2 < θ < G in the three
game scenarios with heterogeneity in ei pi. This observation is slightly stronger than the
prediction of Theorem 2(3) (which says that

∣∣S3
1

∣∣ ≥ ∣∣S3
2

∣∣). Finally, the numerical analysis
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confirms that the results for the absolute contribution are sensitive to ei and pi. In particular,∣∣S2
1

∣∣ = ∣∣S2
2

∣∣ in the full equality scenario;
∣∣S2

1

∣∣ ≥ ∣∣S2
2

∣∣ for all θ in the endowment inequality
and misaligned inequality scenarios, and

∣∣S2
1

∣∣ < ∣∣S2
2

∣∣ for low thresholds and
∣∣S2

1

∣∣ > ∣∣S2
2

∣∣ for
high thresholds in the productivity inequality and aligned inequality scenarios.
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players with higher 𝑒௜𝑝௜ are likely to contribute more at a cooperative NE in terms of col-
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Figure 1. Nash equilibria for different game scenarios and thresholds θ. Utilizing parameters from
Table 1, we set (a) θ = 10 in the low θ panel, (b) θ = 30 in the intermediate θ panel, and (c) θ = 50 in
the high θ panel for all five game scenarios. The colored segments denote the sets of cooperative NEs,
and the colored filled points denote the defective NE. Squares, diamonds, and circles, respectively,
denote the points of equal relative contributions, equal absolute contributions, and equal collective
contributions in the cooperative NE set. Thus, these points are the segmentation points of sets Sk

1
(below the point) and Sk

2 (above the point) for k = 1, 2, 3. When multiple points overlap, they are
adjusted horizontally to be better differentiated. The grey area indicates that the threshold is reached.

5. Concluding Remarks

In this paper, we consider an n-player asymmetric TPGG, where players have different
endowments, productivities, and rewards. This game can have a defective NE and multiple
cooperative NEs. We show that heterogeneity in ei pi can promote cooperation in the sense
that the existence condition of the defective NE becomes stricter. Furthermore, players
with higher ei pi are likely to contribute more at a cooperative NE in terms of collective
contribution, but they do not necessarily have a higher relative contribution or absolute
contribution. This result is consistent with a recent experimental study on a two-player
asymmetric TPGG [11]. In the study [11], subjects either differ in their endowments
or in their productivities. In most of the successful groups (i.e., the group has reached
the threshold), the collective contribution of the rich individual or the more productive
individual is higher, but the two group members tend to have similar relative contributions
in the endowment inequality scenario, while having similar absolute contributions in the
productivity inequality scenario. In sum, our study highlights the nontrivial effects of
inequality on cooperation and coordination in a TPGG.

To deepen our understanding on human behaviors in TPGGs, a possible direction
for future research is to empirically validate the theoretical findings for scenarios where
players differ in two or more dimensions (e.g., the aligned and misaligned inequality
scenarios discussed in Section 4). Another direction for a future investigation could focus
on the coordination problem in an asymmetric climate game. A recent study showed that
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cooperation can be an equilibrium outcome if and only if the weighted average of climate
risk of all countries reaches or exceeds the coefficient of emission reduction target [20].
However, the climate game can have multiple cooperative equilibria, in which countries
have different responsibilities for carbon emission reduction at different equilibria. Thus,
a natural question would be the following: how do countries with different endowments,
climate risks, and emission reduction costs coordinate? Finally, the reward value for each
player in our model is considered to be fixed. It would be interesting to investigate the
TPGG model within a cooperative game framework, where rewards are assigned, according
to the players’ values, to each coalition. Specifically, one could calculate the stable reward
allocation schemes in asymmetric TPGGs based on the Shapley value, CIS value, and
nucleolus and compare the fairness and efficiency of these allocation schemes.
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Appendix A. Proof of Theorem 1

Proof.

(i) Existence conditions of a defective Nash equilibrium

If x = 0 is a Nash equilibrium, then no player has an incentive to contribute when
others do not. Therefore, for any player i with strategy 0 < xi ≤ 1,{

ei ≥ ei(1 − xi) + ri, if ei pixi ≥ θ,
ei ≥ ei(1 − xi), if ei pixi < θ.

According to the assumption of ri ≥ ei, it follows that, for any player i, (1) θ > ei pi or
(2) θ = ei pi and ei = ri.

Intuitively, condition (1) implies that the group cannot reach the threshold when only
one player contributes. Condition (2) implies that, although the threshold can be reached
if player i contributes all of his or her endowment, there is no payoff improvement for
player i.

(ii) Cooperative Nash equilibria set and its existence condition

Let us suppose that the strategy profile x satisfies ∑n
i=1 ei pixi > 0. On the one hand, if

∑n
i=1 ei pixi = θ, then it is easy to check that no player has an incentive to increase or decrease

his or her contribution under the assumption of ri ≥ ei. On the other hand, if ∑n
i=1 ei pixi > θ

or 0 < ∑n
i=1 ei pixi < θ, then at least one player can obtain a higher payoff by reducing his or

her contribution. Therefore, the set of cooperative NEs is {x|∑n
i=1 ei pixi = θ }. In addition,

the cooperative NE set is empty if and only if θ > G (i.e., the group cannot reach the
threshold even if all the players contribute all of their endowments). Thus, a cooperative
NE exists if and only if 0 < θ ≤ G. □
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Appendix B. Proof of Theorem 2

Proof Outline. Theorem 2 includes three parts of results, namely, results for (1) the
relative contribution, (2) the absolute contribution, and (3) the collective contribution. We
begin by proving part (3) and then establish part (1) based on the approach developed in
part (3). Finally, part (2) can be directly obtained from part (1) and part (3).

To prove part (3), it is enough to compare the measures of two consecutive sets,∣∣S3
i

∣∣ and
∣∣S3

i+1

∣∣. We transform the set S3
i to a new set Wi through an affine transformation

and show |Wi| ≥|Wi+1| for all 0 < θ < G and i = 1, . . . , n − 1. This then implies that∣∣S3
1

∣∣ ≥ . . . ≥
∣∣S3

n
∣∣.

For part (1), when ∑n−1
i=1 ei pi < θ < G, each set S1

i can be regarded as an (n − 1)-
dimensional polytope. Thus, the comparison between

∣∣S1
i

∣∣ and
∣∣S1

i+1

∣∣ can be made by
directly calculating the volume of these polytopes. When 0 < θ < en pn, we apply the
approach developed in part (3) to compare

∣∣S1
i

∣∣ and
∣∣S1

i+1

∣∣. Specifically, we represent S1
i

as
⋃n

j=1

(
S1

i ∩ S3
j

)
, and, therefore,

∣∣S1
i

∣∣ = ∑n
j=1

∣∣∣S1
i ∩ S3

j

∣∣∣. It is easy to check that S1
i ∩ S3

j = ∅
for i < j. Hence, to establish

∣∣S1
i

∣∣ < ∣∣S1
i+1

∣∣, we only need to prove the following two lemmas
(refer to Figure A1).

Lemma 1. When 0 < θ < en pn,
∣∣∣S1

i ∩ S3
j

∣∣∣ < ∣∣∣S1
i+1 ∩ S3

j

∣∣∣ for i > j.

Lemma 2. When 0 < θ < en pn,
∣∣S1

i ∩ S3
i

∣∣ < ∣∣S1
i+1 ∩ S3

i+1

∣∣ for i = 1, . . . , n − 1.
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Figure A1. Comparison between
∣∣S1

i
∣∣ and

∣∣∣S1
i+1

∣∣∣ when 0 < θ < en pn.

Proof of part (3). The set S3
i is defined as

S3
i =

{
(x1, x2, . . . , xn)

∣∣∣∣∣∑
n
k=1 ek pkxk = θ, max

k
{ek pkxk} = ei pixi,

xk ∈ [0, 1], ∀k ∈ {1, 2, . . . , n}

}
.

Applying the following affine transformation F : Rn → Rn to set S3
i yields a new set

Wi, as follows:
x1
x2
...

xn

 7−→


e1 p1 0

0 e2 p2

. . . 0

. . . 0
...

...
0 0

. . .
...

. . . en pn




x1
x2
...

xn

 := A


x1
x2
...

xn

.

Their measures satisfy
∣∣S3

i

∣∣ = |Wi |
||A|| , where ||A|| > 0 is the Jacobian determinant. The

set Wi is expressed as



Games 2023, 14, 76 9 of 13

Wi =

(e1 p1x1, e2 p2x2, . . . , en pnxn)

∣∣∣∣∣∣∣
∑n

k=1 ek pkxk = θ, max
k

{ek pkxk} = ei pixi,

0 ≤ ek pkxk ≤ ek pk, ∀k ̸= i,
0 ≤ ei+1 pi+1xi+1 ≤ ei pixi ≤ ei pi

.

Similarly, applying the same transformation to S3
i+1 yields Wi+1, which is expressed as

Wi+1 =

(e1 p1x1, e2 p2x2, . . . , en pnxn)

∣∣∣∣∣∣∣
∑n

k=1 ek pkxk = θ, max
k

{ek pkxk} = ei+1 pi+1xi+1,

0 ≤ ek pkxk ≤ ek pk, ∀k ̸= i, i + 1,
0 ≤ ei pixi ≤ ei+1 pi+1xi+1 ≤ ei+1 pi+1

.

Given that e1 p1 > e2 p2 > . . . > en pn, the set Wi can be partitioned into W ′
i and W ′

i ,
where W ′

i is expressed as

W ′
i =

(e1 p1x1, e2 p2x2, . . . , en pnxn)

∣∣∣∣∣∣∣
∑n

k=1 ek pkxk = θ, max
k

{ek pkxk} = ei pixi,

0 ≤ ek pkxk ≤ ek pk, ∀k ̸= i, i + 1,
0 ≤ ei+1 pi+1xi+1 ≤ ei pixi ≤ ei+1 pi+1

,

and W ′′
i is expressed as

W ′′
i = Wi\W ′

i .

Thus, |Wi| =
∣∣W ′

i

∣∣+ ∣∣W ′′
i

∣∣. Due to the symmetry of ei pixi and ei+1 pi+1xi+1, we deduce
that

∣∣W ′
i

∣∣ =∣∣Wi+1
∣∣. Consequently, |Wi| ≥ |Wi+1|, and, therefore,

∣∣S3
i

∣∣ ≥ ∣∣S3
i+1

∣∣.
Furthermore, when 0 < θ < en pn, the set S3

i can be written as

S3
i =

{
(x1, x2, . . . , xn)

∣∣∣∣∣ n

∑
k=1

ek pkxk = θ, xk ∈
[

0,
θ

ek pk

]
, max

k
{ek pkxk} = ei pixi

}
.

Correspondingly, the set Wi is expressed as

Wi =

{
(e1 p1x1, e2 p2x2, . . . , en pnxn)

∣∣∣∣∣∑
n
k=1 ek pkxk = θ, ek pkxk ∈ [0, θ],

max
k

{ek pkxk} = ei pixi

}
.

Due to the symmetry of ei pixi and ei+1 pi+1xi+1, it is obvious that |Wi| = |Wi+1|, and,
therefore,

∣∣S3
i

∣∣ = ∣∣S3
i+1

∣∣.
Proof of part (1). The set S1

i is defined as

S1
i =

{
(x1, x2, . . . , xn)

∣∣∣∣∣ n

∑
k=1

ek pkxk = θ, xk ∈ [0, 1], ∀k ∈ {1, 2, . . . , n}, max
k

{xk} = xi

}
.

(i) When ∑n−1
i=1 ei pi < θ < G, each S1

i is an (n − 1)-dimensional convex polytope formed
by n vertices. Specifically, we define the following:

α1 =

(
θ − ∑n

k ̸=1 ek pk
e1 p1

, 1, 1, . . . , 1
)

;

α2 =

(
1,

θ − ∑n
k ̸=2 ek pk

e2 p2
, 1, . . . , 1

)
;

...

αn =

(
1, 1, 1, . . . ,

θ − ∑n
k ̸=n ek pk

en pn

)
;

and O =
(

θ
G , θ

G , . . . , θ
G

)
.
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The vertex set of the convex polytope S1
i is written as {O, α1, . . . , αi−1, αi+1, . . . , αn}.

Thus, the volume of S1
i (in terms of the Hausdorff measure) can be obtained by calculating

the magnitude of a cross product

ω =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

v1 v2 . . . vi−1 vi vi+1 . . . vn
a1 a . . . a a a . . . a
a a2 . . . a a a . . . a
...

... . . .
...

...
... . . .

...
a a . . . ai−1 a a . . . a
a a . . . a a ai+1 . . . a
...

... . . .
...

...
... . . .

...
a a . . . a a a . . . an

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where vi is the unit vector, and

a = 1 − θ
G ;

a1 =
θ − ∑n

k ̸=1 ek pk
e1 p1

− θ
G ;

a2 =
θ − ∑n

k ̸=2 ek pk
e2 p2

− θ
G ;

...

an =
θ − ∑n

k ̸=n ek pk
en pn

− θ
G .

The magnitude of ω, which equals the measure of S1
i , is then given by

|ω| =

√
∑n

k=1 (ek pk)
2 (G − θ)n−1

G·∏n
i=1 ek pk

ei pi.

Since e1 p1 > e2 p2 > . . . > en pn, it implies that
∣∣S1

i

∣∣ > ∣∣S1
i+1

∣∣ for all i ∈ {1, 2, . . . , n − 1}.

(ii) When 0 < θ < en pn, we represent S1
i as

⋃n
j=1

(
S1

i ∩ S3
j

)
and focus on the set S1

i ∩ S3
j .

This set can be expressed as

S1
i ∩ S3

j =

{
(x1, x2, . . . , xn)

∣∣∣∣∣∑
n
k=1 ek pkxk = θ, xk ∈ [0, 1], ∀k ∈ {1, 2, . . . , n},

max
k

{ek pkxk} = ej pjxj, max
k

{xk} = xi

}
.

In the following, we prove the two lemmas mentioned in the proof outline.

Proof of Lemma 1. Applying the affine transformation F (this transformation is introduced
in the proof of part (3)) to the set S1

i ∩ S3
j yields a new set Vi,j,

Vi,j =

{
(e1 p1x1, e2 p2x2, . . . , en pnxn)

∣∣∣∣∣∑
n
k=1 ek pkxk = θ, ek pkxk ∈ [0, ek pk], ∀k ∈ {1, 2, . . . , n},

max
k

{ek pkxk} = ej pjxj, max
k

{xk} = xi

}
.

First, we claim that
∣∣Vi,j

∣∣> 0 for i > j under the condition 0 < θ < en pn. To demon-
strate this, we prove that the interior of Vi,j is nonempty. Given 0 < θ < en pn and i > j, we

can find q̂ = (q̂1, q̂2, . . . , q̂n) ∈ Vi,j such that max
k ̸=j

{q̂k} < q̂j and max
k ̸=i

{
q̂k

ek pk

}
< q̂i

ei pi
. For every

g = (g1, g2, . . . , gn) close to q̂, it can be written as εq + (1 − ε)q̂ for small ε. Specifically, we
can choose q from the compact set

C =

{
(e1 p1x1, e2 p2x2, . . . , en pnxn)

∣∣∣∣∑n
k=1 ek pkxk = θ, ek pkxk ∈ [0, ek pk],
es psxs = 0 for some s ∈ supp(q̂)

}
,
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which consists of the faces which do not contain q̂. It is evident that g ∈ Vi,j for a sufficiently
small ε. Hence, for every q ∈ C, g = εq+ (1 − ε)q̂ ∈ Vi,j for all ε < ε(q). It is easy to see that
ε(q) can be chosen as continuous. Let ε := min{ε(q) : q ∈ C}, which is strictly positive.
Therefore, the neighborhood of q̂, denoted as {g|g = εq + (1 − ε)q̂, q ∈ C and ε < ε}, is
contained within the set Vi,j. Consequently,

∣∣Vi,j
∣∣ > 0 for i > j.

Next, we rewrite the sets Vi+1,j and Vi,j as follows:

Vi+1,j =

(e1 p1x1, e2 p2x2, . . . , en pnxn)

∣∣∣∣∣∣∣∣
∑n

k=1 ek pkxk = θ, ek pkxk ∈ [0, ek pk], ∀k ∈ {1, 2, . . . , n},
max

k
{ek pkxk} = ej pjxj,

max
k ̸=i+1

{ei+1 pi+1xk} ≤ ei+1 pi+1xi+1 ≤ ej pjxj

,

and

Vi,j =

(e1 p1x1, e2 p2x2, . . . , en pnxn)

∣∣∣∣∣∣∣∣
∑n

k=1 ek pkxk = θ, ek pkxk ∈ [0, ek pk], ∀k ∈ {1, 2, . . . , n},
max

k
{ek pkxk} = ej pjxj,

max
k ̸=i

{ei pixk} ≤ ei pixi ≤ ej pjxj

.

Partition the set Vi+1,j into V′
i+1,j and V ′′

i+1,j, where

V′
i+1,j =

(e1 p1x1, e2 p2x2, . . . , en pnxn)

∣∣∣∣∣∣∣∣∣
∑n

k=1 ek pkxk = θ, ek pkxk ∈ [0, ek pk], ∀k ∈ {1, 2, . . . , n},
max

k
{ek pkxk} = ej pjxj,

max
k ̸=i+1

{ei+1 pi+1xk} ≤ ei+1 pi+1xi+1 < ei pimax
{

max
k ̸=i,i+1

{xk}, ei pixi
ei+1 pi+1

}
,

and

V ′′
i+1,j =

(e1 p1x1, e2 p2x2, . . . , en pnxn)

∣∣∣∣∣∣∣∣∣
∑n

k=1 ek pkxk = θ, ek pkxk ∈ [0, ek pk], ∀k ∈ {1, 2, . . . , n},
max

k
{ek pkxk} = ej pjxj,

ei pimax
{

max
k ̸=i,i+1

{xk}, ei pixi
ei+1 pi+1

}
≤ ei+1 pi+1xi+1 ≤ ej pjxj

.

Following this,
∣∣Vi+1,j

∣∣ =
∣∣∣V′

i+1,j

∣∣∣ + ∣∣∣V ′′
i+1,j

∣∣∣. Due to the symmetry of ei pixi and

ei+1 pi+1xi+1, we can deduce that
∣∣Vi,j

∣∣ =∣∣∣V ′′
i+1,j

∣∣∣ for i > j. Considering that max
k ̸=i+1

{ei+1 pi+1xk} <

ei pimax
{

max
k ̸=i,i+1

{xk}, ei pixi
ei+1 pi+1

}
, it follows that

∣∣∣V′
i+1,j

∣∣∣ > 0. Therefore,
∣∣Vi,j

∣∣ < ∣∣Vi+1,j
∣∣, and,

thus,
∣∣∣S1

i ∩ S3
j

∣∣∣ < ∣∣∣S1
i+1 ∩ S3

j

∣∣∣ for i > j.

Proof of Lemma 2. In the first step, we prove that
∣∣S1

m ∩ S3
i

∣∣ > ∣∣S1
m ∩ S3

i+1

∣∣ for m > i + 1
and 0 < θ < en pn. Let us consider the set Vm,i, which is obtained by applying the affine
transformation F to set S1

m ∩ S3
i .

Vm,i =

{
(e1 p1x1, e2 p2x2, . . . , en pnxn)

∣∣∣∣∣∑
n
k=1 ek pkxk = θ, ek pkxk ∈ [0, ek pk], ∀k ∈ {1, 2, . . . , n},

max
k

{ek pkxk} = ei pixi, max
k

{xk} = xm

}
.

When 0 < θ < en pn, from Lemma 1, we have |Vm,i+1|> 0 and |Vm,i| > 0 for m > i + 1.
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We rewrite the set Vm,i+1 and Vm,i as

Vm,i+1 =

(e1 p1x1, e2 p2x2, . . . , en pnxn)

∣∣∣∣∣∣∣
∑n

k=1 ek pkxk = θ, max
k

{ek pkxk} = ei+1 pi+1xi+1,

∀k ̸= i, i + 1, 0 ≤ ek pkxk ≤ ek pkxm,
0 ≤ ei pixi ≤ ei+1 pi+1xi+1 ≤ ei+1 pi+1xm

,

and

Vm,i =

(e1 p1x1, e2 p2x2, . . . , en pnxn)

∣∣∣∣∣∣∣
∑n

k=1 ek pkxk = θ, max
k

{ek pkxk} = ei pixi,

∀k ̸= i, 0 ≤ ek pkxk ≤ ek pkxm,
0 ≤ ei+1 pi+1xi+1 ≤ ei pixi ≤ ei pixm

,

and then partition the set Vm,i into V′
m,i and V ′′

m,i, where

V′
m,i =

(e1 p1x1, e2 p2x2, . . . , en pnxn)

∣∣∣∣∣∣∣
∑n

k=1 ek pkxk = θ, max
k

{ek pkxk} = ei pixi,

∀k ̸= i, i + 1, 0 ≤ ek pkxk ≤ ek pkxm,
0 ≤ ei+1 pi+1xi+1 ≤ ei pixi ≤ ei+1 pi+1xm

,

and

V ′′
m,i =

(e1 p1x1, e2 p2x2, . . . , en pnxn)

∣∣∣∣∣∣∣
∑n

k=1 ek pkxk = θ, max
k

{ek pkxk} = ei pixi,

∀k ̸= i, 0 ≤ ek pkxk ≤ ek pkxm,
ei+1 pi+1xm < ei pixi ≤ ei pixm

.

Hence, |Vm,i| =
∣∣∣V′

m,i

∣∣∣ + ∣∣∣V ′′
m,i

∣∣∣. Due to the symmetry of ei pixi and ei+1 pi+1xi+1,

|Vm,i+1| =
∣∣∣V′

m,i

∣∣∣. Since ei pixm > ei+1 pi+1xm,
∣∣∣V ′′

m,i

∣∣∣ > 0. Therefore, |Vm,i| > |Vm,i+1|,
and, thus,

∣∣S1
m ∩ S3

i

∣∣ > ∣∣S1
m ∩ S3

i+1

∣∣ for m > i + 1.
In the second step, we prove

∣∣S1
i ∩ S3

i

∣∣ < ∣∣S1
i+1 ∩ S3

i+1

∣∣. From part (3),
∣∣S3

1

∣∣ = . . . =
∣∣S3

n
∣∣

when 0 < θ < en pn. We note that the following equations hold:∣∣∣S3
i+1

∣∣∣ = n

∑
j=1

∣∣∣S1
j ∩ S3

i+1

∣∣∣;
∣∣∣S3

i

∣∣∣ = n

∑
j=1

∣∣∣S1
j ∩ S3

i

∣∣∣;
and

∣∣∣(S1
j ∩ S3

i

)
∩
(
S1

k ∩ S3
i
)∣∣∣ = 0 for all j ̸= k. Given

∣∣S1
m ∩ S3

i

∣∣ > ∣∣S1
m ∩ S3

i+1

∣∣ for m > i + 1

and S1
i ∩ S3

j = ∅ for i < j, we deduce that
∣∣S1

i ∩ S3
i

∣∣+ ∣∣S1
i+1 ∩ S3

i

∣∣ < ∣∣S1
i+1 ∩ S3

i+1

∣∣ (refer to

Figure A2). Consequently,
∣∣S1

i ∩ S3
i

∣∣ < ∣∣S1
i+1 ∩ S3

i+1

∣∣. □
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Notes 
1 Dragicevic [10] theoretically studied a TPGG in the context of the option fund market and found that payoff inequality between 

buyers and sellers can undermine coordination efforts. 
2 Dong et al. [19] considered a climate game with two types of players, in which rich (or poor) players have higher (or lower) 

endowment and emission reduction cost (i.e., low productivity). Their theoretical analysis and behavioral experiment based on 
specific parameters showed that the effect of multiple inequalities on coordination is generally more complex. More general 
discussion on NE in a climate game with heterogeneous players can be found in [19]. 

3 We note that at an NE, the absolute contribution of player 𝑖 cannot exceed 𝑟௜ even if 𝑟௜ < 𝑒௜. Otherwise, this player can obtain 
a higher payoff by deviating to free-riding. Thus, this assumption does not affect the equilibrium structure of the game. 

4 An alternative scenario is one in which players choose their strategies from a finite grid {0, ଵ௠ , … ,1} with sufficiently large 𝑚. 
In this case, the cooperative NE set consists of finite number of equilibria, and ห𝑆௜௞ห > ห𝑆௝௞ห for all 𝑗 ≠ 𝑖 (𝑘 = 1,2,3) implies that 
there are more equilibria in which player 𝑖 contributes the most. 
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Figure A2. Comparison between
∣∣S1

i ∩ S3
i

∣∣ and
∣∣∣S1

i+1 ∩ S3
i+1

∣∣∣ when 0 < θ < en pn.
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Notes
1 Dragicevic [10] theoretically studied a TPGG in the context of the option fund market and found that payoff inequality between

buyers and sellers can undermine coordination efforts.
2 Dong et al. [19] considered a climate game with two types of players, in which rich (or poor) players have higher (or lower)

endowment and emission reduction cost (i.e., low productivity). Their theoretical analysis and behavioral experiment based on
specific parameters showed that the effect of multiple inequalities on coordination is generally more complex. More general
discussion on NE in a climate game with heterogeneous players can be found in [19].

3 We note that at an NE, the absolute contribution of player i cannot exceed ri even if ri < ei. Otherwise, this player can obtain
a higher payoff by deviating to free-riding. Thus, this assumption does not affect the equilibrium structure of the game.

4 An alternative scenario is one in which players choose their strategies from a finite grid
{

0, 1
m , . . . , 1

}
with sufficiently large m. In

this case, the cooperative NE set consists of finite number of equilibria, and
∣∣∣Sk

i

∣∣∣ > ∣∣∣Sk
j

∣∣∣ for all j ̸= i (k = 1, 2, 3) implies that there
are more equilibria in which player i contributes the most.
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