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Reciprocity is a simple principle for cooperation that explains many of 
the patterns of how humans seek and receive help from each other. To 
capture reciprocity, traditional models often assume that individuals use 
simple strategies with restricted memory. These memory-1 strategies are 
mathematically convenient, but they miss important aspects of human 
reciprocity, where defections can have lasting effects. Here we instead 
propose a strategy of cumulative reciprocity. Cumulative reciprocators 
count the imbalance of cooperation across their previous interactions with 
their opponent. They cooperate as long as this imbalance is sufficiently 
small. Using analytical and computational methods, we show that this 
strategy can sustain cooperation in the presence of errors, that it enforces 
fair outcomes and that it evolves in hostile environments. Using an 
economic experiment, we confirm that cumulative reciprocity is more 
predictive of human behaviour than several classical strategies. The basic 
principle of cumulative reciprocity is versatile and can be extended to a 
range of social dilemmas.

Evolutionary game theory provides a formal framework to study the 
evolution of cooperation, which is a far-reaching problem that has 
attracted great attention1–3. The simplest and most widely used model 
to study this problem is the prisoner’s dilemma2,4. In the prisoner’s 
dilemma, two individuals independently decide whether to cooper-
ate. Mutual cooperation is optimal for the pair, yet each individual is 
tempted to defect. Although the basic premise of the game is simple, it 
approximates the logic of many cooperative interactions in biological, 
societal and artificial worlds, including friends who exchange favours5, 
animals who exchange food or other services6 and nations that coordi-
nate their policies7. When there is only a single round of the prisoner’s 
dilemma, defection is the only Nash equilibrium. However, if individuals 
interact repeatedly, they can sustain cooperation through conditionally 
cooperative strategies8. The respective mechanism of cooperation is 
called direct reciprocity1,3.

The key to sustaining cooperation in a repeated prisoner’s 
dilemma is to act like a ‘partner’9. As long as the opponent is coopera-
tive, a partner should go along. However, once an opponent defects, a 

partner strategy needs to make sure that the opponent cannot gain a 
lasting advantage. Examples of such partner strategies are tit-for-tat 
(TFT)2, generous tit-for-tat (GTFT)10,11 and win-stay lose-shift (WSLS)12,13, 
among many others14–21. Although each of these strategies can succeed 
in certain environments2,10,13, they also have well-known weaknesses. 
For example, TFT is unable to sustain cooperation in the presence of 
errors22. GTFT typically fails to evolve when individuals have access to a 
richer strategy space23. Finally, WSLS is stable only when the benefit of 
mutual cooperation is sufficiently large13. The problem of identifying 
successful strategies of direct reciprocity becomes even more complex 
when interactions take place among more than two individuals14,24, or 
when the benefit of cooperation can change in time25,26.

Traditionally, much of the existing work on direct reciprocity 
has been confined to individuals with restricted memory. The most 
common assumption is that all individuals have one-round memory27, 
but researchers have also identified several promising strategies that 
take into account the last two or three rounds20,21,28. While some of 
these strategies exhibit remarkable robustness properties (especially 
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If they defect (DD), they both receive the punishment payoff P. Finally, if 
one player cooperates while the other defects (CD or DC), the coopera-
tor gets the sucker’s payoff S whereas the defector gets the temptation 
payoff T. Payoffs satisfy the characteristic conditions of the prisoner’s 
dilemma, S < P < R < T and 2R > T + S. That is, mutual cooperation is the 
best outcome for the pair, yet each player individually prefers to defect. 
For our numerical simulations, we use the payoffs of Axelrod2 (R = 3, 
S = 0, T = 5 and P = 1), unless stated otherwise.

The players’ actions may be subject to ‘trembling hand’ errors22,35. 
That is, a player who intends to cooperate may instead defect with 
some probability 0 ≤ ε < 1/2 (similarly, a player who wishes to defect 
may cooperate with the same probability). For analytical results, we 
suppose that the game is repeated infinitely. After each round, there 
is another round. We complement these analytical results with simula-
tions for long but finitely repeated games. The overall payoffs of Alice 
and Bob are defined as their expected payoffs per round. For details, 
see Methods.

Traditionally, much of the work on reciprocity assumes that play-
ers either have finite recall20,36–39 or that their decisions can be encoded 
with finite state automata40,41. Instead, here, we propose a strategy of 
cumulative reciprocity. We formalize this strategy by introducing two 
counter variables, nA(k) and nB(k). These variables record how often 
Alice and Bob have defected before round k. Let d(k) denote the differ-
ence, d(k) = nB(k) − nA(k). We refer to d(k) as the defection difference 
statistic. We say that Alice adopts the strategy CURE if, in any given 
round k, she cooperates if and only if this defection difference statistic 
is below a pre-defined threshold d(k) ≤ ∆A. We interpret ∆A ≥ 0 as 
Alice’s tolerance level. If it is zero, Alice demands that Bob is at least as 
cooperative as Alice. For larger values of ΔA, Alice becomes increasingly 
more lenient. Figure 1b depicts the basic logic of CURE.

In contrast to memory-1 strategies, a cumulative reciprocator 
takes the entire history of the game into account. As a result, the 
mathematics becomes more intricate. Whereas games between two 
memory-1 players can be represented as a Markov chain with four 
possible states (the possible outcomes of any given round), the state 
variable d(k) of a cumulative reciprocator can assume arbitrary integer 
values. Perhaps somewhat surprisingly, it is still possible to derive ana-
lytical results. To this end, we represent the dynamics between a CURE 
player and its opponent by an infinitely dimensional linear system. In 
many important cases, this system can be solved. We summarize our 
results in the following. All details and proofs are in Supplementary 
Information Section 1.

Payoffs against selected strategies
To gain some first insights into the performance of CURE, we first study 
games between two CURE players. In case they both use the same toler-
ance level Δ ≥ 1, each player’s average cooperation rate ρCURE becomes

ρCURE = 1 − 2 − 3ε + 2∆ (1 − 2ε)
1 − 2ε2 + 2∆ (1 − 2ε)

ε. (1)

when errors can be assumed to be vanishingly rare), strategies with a 
pre-defined memory length often fail to capture certain important 
aspects of human behaviour. For example, individuals might often find 
it easier to forgive a defecting opponent if this opponent is generally 
cooperative. To encode these more nuanced responses, individuals 
need to resort to an opponent’s cumulative behaviour, during the 
entire course of their previous interactions.

Perhaps the most natural way to introduce such behaviours is to 
let individuals count how often each of them has defected so far. To 
formalize this idea, consider a repeated prisoner’s dilemma between 
two individuals named ‘Alice’ and ‘Bob’. Suppose that, during their first 
k − 1 interactions, Alice defected in nA rounds whereas Bob defected in 
nB rounds. Alice may choose to cooperate in round k unless Bob 
defected substantially more often in the past than she did. In other 
words, Alice would cooperate unless nB − nA > ∆A, where ∆A ≥ 0 can 
be interpreted as Alice’s tolerance level. Herein, we refer to this kind of 
strategy as cumulative reciprocity (CURE).

While CURE is straightforward to define, analytical results are 
more difficult to obtain, compared with the case of memory-1 strate-
gies. Nevertheless, such results are feasible. First, we show that CURE 
is indeed a partner strategy in the absence of implementation errors. 
Second, similar to previous work on zero-determinant strategies29–34, 
individuals can use CURE to enforce fairness. If one player is a cumula-
tive reciprocator, both players are guaranteed to get the same payoff, 
independent of the opponent’s strategy. Third, even in the presence 
of (rare) errors, the payoff of CURE against itself is approximately opti-
mal. At the same time, unconditional defectors cannot invade. Further 
simulations suggest that individuals are most likely to adopt CURE 
when most well-known memory-1 strategies fail. We further support 
these theoretical findings with a behavioural experiment. According to 
this experiment, CURE is better able to explain human behaviour than 
many classical strategies such as TFT2, WSLS12,13 or previously proposed 
memory-k strategies20,21,28.

Overall, our findings suggest that, when cooperation is particularly 
costly, simple strategies based on an opponent’s last behaviour do not 
suffice. In such environments, it takes a more cumulative assessment 
of the players’ past actions to sustain cooperation. Here, we combine 
various mathematical, computational and experimental methods to 
facilitate the analysis of CURE. Although many of our analyses focus on 
the classical prisoner’s dilemma, the main principles of CURE extend to 
multiplayer interactions, as well as to stochastic games in which payoffs 
fluctuate in time. In all these applications, CURE proves to be a simple 
mechanism to sustain fairness and cooperation.

Results
The repeated prisoner’s dilemma with CURE
We first consider pairwise interactions between only two individuals 
(Fig. 1a). We refer to the players as Alice and Bob. In each round, both 
Alice and Bob independently decide whether they want to cooperate or 
defect. If they both cooperate (denoted by CC), they get the reward R.  

CURE and TFT in noisy environmentc

Round k 1 2 3 4 5 6 7 …

Alice (CURE) C C C C D D C …

Bob C D D D D C C …

d(k) 0 1 2 3 3 2 2 …

CURE strategy (Δ = 2)b

Bob

Alice

Prisoner’s dilemmaa

C D

C (R, R) (S, T )

D (T, S) (P, P) 0

TFT C D C D C D C …

TFT C C D C D C D …

CURE C D D D C C C …

CURE C C C C D C C …

Fig. 1 | CURE in the repeated prisoner’s dilemma. a, The payoff matrix of a 
prisoner’s dilemma game. For simulations, we use R = 3, S = 0, T = 5 and P = 1, 
unless specified otherwise. b, CURE defects when the defection difference 
statistic d(k) exceeds the tolerance threshold (in this case, Δ = 2). Otherwise, 
CURE keeps cooperating. c, When two TFT players meet and one player makes an 

error, cooperation breaks down. When two CURE players meet, cooperation is 
robust even when one player mistakenly defects in three of the rounds (Δ = 2). The 
blue cirlce indicates the occurrence of an error, and the red letter indicates the 
defection caused by the error.
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In particular, the cooperation rate approaches 1 as errors become 
rare, ε → 0. Therefore, although CURE follows a similar basic principle 
to TFT, it is much more robust with respect to noise27 (Fig. 1c). Overall, 
the resulting average payoff π (CURE,CURE) is

π (CURE,CURE) = (1−ε)2(1−2(1−ε)ε+2∆(1−2ε))
1−2ε2+2∆(1−2ε)

× R

+
2ε(1−ε)((1−ε)2+∆(1−2ε))

1−2ε2+2∆(1−2ε)
× (T + S)

+ ε2(3−2(3−ε)ε+2∆(1−2ε))
1−2ε2+2∆(1−2ε)

× P.

(2)

As one may expect, this payoff is monotonically decreasing in 
the error rate, but increasing in the strategy’s tolerance level. The 
more tolerant the two players are, the better they can cope with 
each other’s unintentional errors. Analogous formulas can also be 
derived if the two cumulative reciprocators use different thresholds 
ΔA and ΔB.

Of course, a strategy’s payoff against itself is only one possible 
measure of a strategy’s ability to sustain cooperation. In a next step, we 
consider interactions between CURE and other well-known strategies. 
We start by matching a cumulative reciprocator with an unconditional 
defector (ALLD). We find that, in that case, both players’ cooperation 
rates assume the theoretical minimum ε (which is also how often ALLD 
cooperates against itself). The result is intuitive. If Alice adopts CURE 
and Bob adopts ALLD, Alice is only expected to cooperate in the first 
ΔA rounds. From then on, both players effectively implement an ALLD 
strategy. At that point, either of them only cooperates in case of an 
error. Because the first ΔA rounds are negligible in infinitely repeated 
games, both players obtain the same payoff. As a result, we find that 
CURE weakly dominates ALLD for all error rates and all tolerance levels 
(Supplementary Information Section 1). Cumulative reciprocators can 
therefore cope with unconditional defectors even better than TFT (TFT 
never dominates ALLD in the presence of errors22). Similarly, we can also 
consider games between cumulative reciprocators and unconditional 
cooperators (ALLC). Here, cooperation rates are maximal, 1 − ε, which is 
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Fig. 2 | The evolutionary dynamics of pairwise strategy competitions. We 
explore whether CURE can emerge when initially rare. To this end, we explore 
the evolutionary dynamics for nine different resident populations and three 
different noise rates (1%, 5% and 10%). Initially, the fraction of cumulative 
reciprocators is set to 0.001. We explore the further dynamics with simulations. 
a–f, Results for CURE versus resident strategies with little cooperation: ALLD (a), 
HardMajority (b) and an extortionate strategy (c) and versus different variations 
of tit-for-tat: TFT (d), GTFT0.3 (e) and CTFT (f). All these resident populations 
are invaded by CURE. g, Against WSLS, the critical initial frequency of CURE to 

invade is approximately 0.488 at the noise rate of 1%, 0.437 at the noise rate of 
5% and 0.368 at the noise rate of 10%. h,i, Finally, for two resident populations 
which tend to be highly cooperative: ALLC (h) and SoftMajority (i), CURE does 
not invade. The general parameters are the same as before. For GTFT, we use a 
generosity parameter of 0.3 (that is, after a defection, a GTFT player cooperates 
with 30% probability). For the extortionate strategy, we use an extortion 
factor of 2 (that is, this extortionate strategy strives to get twice of the payoff 
surplus of its co-player29). For details on the strategies used, see Supplementary 
Information Section 2.
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also the cooperation rate of ALLC against itself. In the absence of errors, 
ε → 0, the payoff of two CURE player thus matches the payoff of ALLC 
against CURE. For positive error rates, unconditional cooperators have 
a slight payoff advantage when they interact with a CURE opponent, 
compared with the interaction between two CURE players. We discuss 
the consequences of this advantage in more detail in the next sections.

In addition to ALLC and ALLD, we use a similar approach to derive 
the payoff of CURE against arbitrary memory-1 opponents. We no 
longer solve the respective infinitely dimensional system explicitly, but 
use the equations to approximate payoffs numerically (Supplementary 
Information Section 1 and Supplementary Tables 1–6). To validate these 
results, we implement independent computer simulations to estimate 
the players’ payoffs and cooperation rates. To this end, we consider a 
CURE player and an opponent who adopts one of nine selected strate-
gies. The simulation results match our analytical calculations (Sup-
plementary Information Section 2 and Supplementary Tables 1–8). 
The results also suggest that, although CURE is generally cooperative, 
it does not cooperate with all other cooperative strategies in the pres-
ence of errors. As an example, we show that, when CURE interacts with 
WSLS, all four game outcomes (CC, CD, DC and DD) occur equally often 
over time (Supplementary Fig. 1).

Fairness and stability of CURE
The previous analysis implies that, when cumulative reciprocators 
interact with either ALLC or ALLD, both players obtain the same pay-
off. This holds more generally. We can prove that, for symmetric 2 × 2 

games, CURE always enforces an equal outcome. More precisely, irre-
spective of the co-player’s strategy σ, a cumulative reciprocator always 
reacts in such a way that, eventually,

π (CURE,σ) = π (σ,CURE) . (3)

Equation (3) holds irrespective of the precise error rate and CURE’s 
tolerance level. Using the terminology of Duersch et al.42,43, we conclude 
that CURE is unbeatable. No opponent is able to gain a lasting advan-
tage in a direct interaction with a cumulative reciprocator. CURE shares 
the property of enforcing fairness with another classical strategy for 
the prisoner’s dilemma, TFT (for which an equation like equation (3) 
was first derived by Press and Dyson29). This similarity between CURE 
and TFT is not a coincidence. As an illustration, consider a game with-
out errors and suppose that Alice adopts CURE whereas Bob uses an 
arbitrary strategy. Then, Alice cooperates until the defection difference 
statistic d(k) hits her tolerance level. At that point, Alice effectively 
implements a TFT strategy. She cooperates as long as Bob does, and 
she switches to defection once Bob defects. If Bob then again resumes 
cooperation, so does Alice.

By combining the previous results, we show that, in the absence 
of errors, CURE forms a Nash equilibrium in the repeated prisoner’s 
dilemma. To see this, note that, for ε = 0, the payoff of CURE against 
itself simplifies to the mutual cooperation payoff R. If a single deviating 
player could achieve a larger payoff than R, equation (3) would imply 
that also the remaining CURE player obtains a payoff larger than R. 
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Fig. 3 | Evolution of CURE in populations of memory-1 players. We consider 
the evolutionary dynamics when individuals can choose among a general set 
of memory-1 strategies and CURE. Initially, all available strategies are equally 
abundant in the population. As the simulation proceeds, we first often observe 
the emergence of TFT-like strategies. The long-run dynamics depends on the 
scenario considered. a, Without CURE, players eventually tend to adopt GTFT-
like strategies. These players always reciprocate a co-player’s cooperation, but 
they occasionally also cooperate if the co-player defected. b–d, Once CURE 
is available, it becomes predominant, irrespective of the tolerance threshold 

Δ values of 1 (b,d) or 2 (c), with overall payoffs remaining stable and close to 
the theoretical maximum (d). e,f, While the previous results allow for (rare) 
mutations, we obtain similar results if there are either no mutations at all (e) or 
if players are unable to learn CURE by mutation (f). For clarity, we only depict 
strategies that reach a frequency of at least 0.1 at some point during the process. 
We represent the evolving memory-1 strategies as vectors (p1, p2, p3, p4). The 
entries correspond to the player’s cooperation probability after CC, CD, DC and 
DD, respectively.
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However, because 2R is the maximum payoff that the two players can 
possibly achieve, this yields a contradiction (in the Supplementary 
Information, we strengthen this result slightly by showing that CURE 
is in fact a subgame perfect equilibrium44).

For positive error rates, the above argument is no longer true. 
Here, players can gain a payoff advantage by deviating to ALLC. How-
ever, the respective payoff advantage is often negligible. In particular, 
for sufficiently small error rates, CURE remains an approximate Nash 
equilibrium (Supplementary Information Section 1). This means that 
the payoff advantage from deviating to any other strategy is bounded 
from above, and it vanishes completely as errors become rare.

CURE and population dynamics
For the previous results, we considered games among players with fixed 
strategies. This kind of analysis is useful to explore a strategy’s basic 
properties. However, it does not take into account whether players 
have an incentive to adopt their respective strategies in the first place. 
To explore this latter question, we now consider a large population 
of players and let their strategies evolve (see Methods for the precise 
setup of our evolutionary simulations).

We first examine whether CURE has an evolutionary advantage 
when populations contain only two strategies. We compare CURE with a 
tolerance level of Δ = 1 with nine well-known strategies for the repeated 
prisoner’s dilemma (Fig. 2, Supplementary Figs. 2–7 and Supplemen-
tary Information Section 3; for exact descriptions of the nine strategies, 
see Supplementary Information Section 2). In the simulations in Fig. 
2, CURE is initially adopted by 0.1% of the population (accordingly, 
we speak of the other strategy as the ‘resident’). The results show that 
CURE invades six of the nine considered resident populations (Fig. 
2a–f). Against WSLS, we observe that CURE is risk-dominant (Fig. 2g)45. 
The critical frequency of cumulative reciprocators required to invade 
is below 50%. Only in resident populations that tend to cooperate 
unconditionally does CURE not evolve (Fig. 2h,i). Here, CURE suffers 
from its slight payoff disadvantage discussed above. However, once 
we additionally include defectors into the population, CURE again 

becomes essential. In that case, we observe that ALLC, ALLD and CURE 
can stably coexist (Supplementary Figs. 8 and 9; see Supplementary 
Information Section 4 for a detailed analysis).

To explore the evolutionary performance of CURE when many 
strategies compete, we have run additional simulations for arbitrary 
memory-1 strategies. Each memory-1 strategy is represented by a 
four-dimensional vector, (p1, p2, p3, p4). Here, p1, p2, p3 and p4 refer to the 
player’s probability to cooperate given that the outcome of the previous 
round is CC, CD, DC and DD, respectively. For each entry in the vector, 
we consider 11 possible values, equally distributed between 0.01 and 
0.99 (corresponding to a noise rate of 1%). Overall, we thus allow for 
114 = 14,641 memory-1 strategies, to which we add a single strategy of 
CURE. Initially, all strategies are equally abundant. We use the same 
parameters and simulation techniques as above (Methods).

We examine the evolutionary dynamics under different scenarios 
(Fig. 3). When individuals can only choose among memory-1 strategies 
(not CURE), evolution eventually leads to a coexistence of different 
GTFT-like strategies (Fig. 3a). The respective strategies are of the form 
(0.99, g1, 0.99, g2), with g1, g2 ≥ 0.1. That is, all of them aim to reciprocate 
a co-player’s cooperation, but they would occasionally also cooperate 
against defectors. The dynamics change completely if CURE is added. 
After an initial transitional period, we observe that a vast majority of 
players engage in CURE, irrespective of CURE’s tolerance level or of the 
exact mutation scheme used (Fig. 3b–f). Although both GTFT and CURE 
are overwhelmingly cooperative, CURE seems to be more robust with 
respect to subsequent invasions, and it leads to slightly larger average 
population payoffs.

In a next step, we explore how the dynamics depends on the exact 
payoffs. To this end, we vary the reward for mutual cooperation R 
between (T + S)/2 and T. We identify three different regimes (Fig. 4 and 
Supplementary Figs. 10–17; see Supplementary Information Sections 
5 and 6 for a detailed description). (1) When mutual cooperation yields 
substantial rewards (R ≥ 3.675), WSLS dominates the population. This 
result is largely in line with earlier work. In the presence of errors, 
WSLS becomes evolutionarily stable once R is sufficiently large20. In 
that case, it also evolves readily among memory-1 players13. (2) For a 
small window of intermediate rewards, 3.625 ≤ R < 3.675, GTFT-like 
strategies are predominant. Among those strategies, most of them 
have a generosity of 0.6 (that is, after a co-player’s defection, they 
cooperate with around 60% probability; Fig. 4, inset). (3) When mutual 
cooperation generates only a comparably modest reward (R < 3.675), 
CURE is most abundant. CURE is thus particularly likely to succeed in 
those environments that are traditionally considered as hostile to the 
evolution of cooperation.

These evolutionary results are remarkably robust with respect to 
various model extensions. For example, in Supplementary Informa-
tion Sections 7–9, we additionally discuss the evolutionary dynamics 
when different variants of CURE compete, or when CURE competes 
against a selection of memory-2 and memory-3 strategies, or competi-
tions between a discounted version of CURE and selected memory-1 
strategies. Moreover, in Fig. 5, we illustrate how the concept of CURE 
extends to stochastic games25,26 in which payoffs can fluctuate in time, 
and to repeated games that involve more than two players38,39 (see also 
Supplementary Information Section 10).

CURE and human play
The above results highlight the strong theoretical properties of CURE. 
In a next step, we explore the relevance of CURE for human decision-
making, by implementing a simple behavioural experiment with two 
treatments (Methods). In the treatment without errors, the decisions 
of the human participants are executed perfectly. In the treatment with 
errors, the decisions are mis-implemented with a 10% probability. The 
basic results of this experiment are as one may expect46,47. The game 
without errors yields more cooperation, and in both treatments, coop-
eration rates decrease slightly in time (Fig. 6a,b).
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Fig. 4 | CURE, GTFT and WSLS dominate the population in different payoff 
regions. Our previous results are based on the classical payoffs used by Axelrod2. 
Here, we use the same basic setup as in Fig. 3 to explore which strategies are  
most successful as we vary the reward R for mutual cooperation. For each  
value of R, we record the final frequency of CURE, WSLS and the class of  
GTFT-like strategies of the form (0.99,p2, 0.99, p4). We denote by GTFTx the set 
of all such strategies for which p2 and p4 are at most x. These sets are nested, 
GTFT0.5 ⊂ GTFT0.6 ⊂… ⊂ GTFT0.9. The graph suggests that there are two 
transition points, R∗1= 3.625 and R∗2 = 3.675. When R < R∗1, CURE dominates the 
population. When R∗1 ≤ R < R∗2, GTFT-like strategies are predominant. When 
R ≥ R∗2, WSLS is most abundant. For details and depictions of some of the 
evolutionary trajectories, see Supplementary Information Section 6.
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To explore the extent to which human decisions are accurately 
predicted by CURE, we consider one particular instance of CURE (with 
a threshold of Δ = 3, although other thresholds yield similar results). 
For comparison, we consider the four pure memory-1 strategies that 
can sustain cooperation in the absence of errors19, namely GRIM32, TFT2, 
firm-but-fair27 and WSLS12,13. In addition, we also include three mem-
ory-2 and memory-3 strategies that have been highlighted recently: 
AON2

20, TFT-ATFT28 and CAPRI21 (for definitions of all these strategies, 
see Supplementary Information Sections 8 and 11). For each partici-
pant in the experiment, we compare the participant’s actual decisions 
with the decisions the participant would have made when using any of 
these eight strategies. For the treatment without errors, we find that all 
eight strategies predict human behaviour equally well. However, these 
results change in the treatment with errors, in which even cooperative 
participants defect occasionally. Here, only CURE correctly predicts 
the behaviour of a substantial number of participants across all rounds 
(Fig. 6c and Supplementary Information Section 11). Compared with 
traditionally considered rules of reciprocity, CURE thus seems to be a 
more sensible guiding principle for cooperation.

Discussion
Reciprocal cooperation requires that individuals are prepared to help 
others, yet they also need to be ready to fight back when their help is 
exploited2. Most of the previously known strategies with these proper-
ties, including TFT2 and WSLS12,13, only react to the very last round, while 
ignoring the entire previous history of interactions. In contrast, friends 

are often comfortable with temporary imbalances, as long as they are 
on equal terms on average48. To capture reciprocal behaviours that 
unfold on such a longer timescale, we introduce the strategy of CURE. 
Individuals with this strategy keep a mental record of how often each 
party has defected in the past. They cooperate as long as this record is 
sufficiently balanced, and defect otherwise.

The strategy of CURE has a number of remarkable properties. Its 
payoff is robust with respect to errors, it enforces fairness and it is a Nash 
equilibrium in the absence of errors. Yet, it does not satisfy the notion 
of evolutionary stability49. Evolutionary stability is generally difficult 
to achieve in repeated games50–52. However, in large and heterogene-
ous populations, the notion of evolutionary stability seems overall less 
important. In such populations, the success of a strategy may rather be 
determined by how well it performs against a wide variety of strategies. 
Our simulations suggest that CURE fares particularly well in this regard. 
These positive results are largely independent of how often errors occur, 
or how frequent mutations are. In this way, CURE may revive a more gen-
eral discussion on the effect of memory on the stability of reciprocity. 
As Press and Dyson29 pointed out, longer memory does not give a player 
an immediate advantage against shorter-memory opponents. Although 
their assertion holds for pairwise interactions, it is no longer true when 
players need to find strategies that respond well to many different co-
players53. In such mixed populations, CURE can be remarkably successful.

The analytical properties of CURE are perhaps less straightforward 
to derive than the properties of more conventional strategies with 
finite recall. For example, the dynamics among two memory-1 players 
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Fig. 5 | CURE in stochastic games and the repeated public goods game. In 
addition to the repeated prisoner’s dilemma, we also explored examples in which 
individuals interact in a stochastic game25,26 or in a public goods game38,39. a, As an 
example of a stochastic game, we suppose that players can be in one of two 
possible states. In both states, they interact in a donation game. The benefit of 
cooperation bs depends on the current state s, with cooperation in state 1 being 
more valuable, b1 > b2. Players only find themselves in state 1 if they both 
cooperated (i.e. 2C) in the previous round. Also in this stochastic game, CURE is 
able to enforce equal payoffs, independent of the co-player’s strategy. b,c, When 
the benefit of cooperation in the first game is comparably small, cooperation 
cannot evolve among memory-1 players. It evolves readily when CURE is added to 

the population. d, As an example of a multiplayer game, we explore a public 
goods game with four players. Again, CURE enforces fairness. Irrespective of the 
strategies of the other group members, a cumulative reciprocator gets the same 
payoff as the other group members obtain on average. e,f, As before, CURE is 
particularly strong when cooperation is difficult to achieve otherwise (for small 
multiplication factors r). The parameter values in the stochastic game (unless 
explicitly varied) are b1 = 1.5 and b2 = 1.01 with a threshold of Δ = 1. In the public 
goods game, we use n = 4, r = 1.5, c = 1, ∆ = 0.5. In both cases, the noise is 
ε = 0.001 and strategies are subject to mutations for the entire simulation. See 
Supplementary Information Section 10 for details on how these games were 
implemented and our respective implementation of CURE.
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can be captured by solving a comparably simple formula29. In contrast, 
a mathematical description of the average cooperation rate of CURE 
leads to an infinite system of linear equations (see Supplementary Infor-
mation Section 1). It is probably for this reason that related previous 
work either completely relied on simulations54 or focused on a simpler 
case in which players always execute their actions without errors55. With 
our study, we offer a mathematical framework to analyse CURE in more 
general environments. Our results are applicable to classical two-player 
repeated games such as the prisoner’s dilemma, but they also apply to 
multiplayer games, or games in which the feasible payoffs vary in time. 
Future work could explore, for example, how CURE extends to games 
with continuous degrees of cooperation, or it could identify alternative 
strategies based on cumulative assessments of the players’ past history.

Even though the mathematical analysis of CURE may be elabo-
rate, the strategy itself is straightforward to implement. Cumulative 
reciprocators do not need to memorize the exact outcome of the last k 
rounds20, let alone the precise history of all past interactions. Instead, 
players only keep track of a single variable, the defection difference 
statistic. This statistic is easily updated, and it has an intuitive interpre-
tation. It simply counts the imbalance in the players’ past cooperative 
actions. A comparable bookkeeping strategy seems to be at work when 
people keep a loose record of obtained favours that need to be repaid. 
Such bookkeeping strategies may be rare among close friends, but 
they can play an important role in the early stages of a social relation-
ship56. Especially when no mutual trust has been established, a mental 
record of the overall cooperation balance can be important to avoid 
exploitation. At the same time, it allows individuals to forgive peers 
who only defected by mistake. With these advantages, CURE serves as 
an effective mechanism to maintain fairness and mutual cooperation.

Methods
The theoretical aspects of our study raise no ethical concerns. For 
our behavioural experiments, we obtained institutional review board 
approval from the Ethics Committee of the Medical Faculty of the 
University of Kiel (D 613/21, 29 October 2021).

Simulation-based estimation of payoffs and cooperation rates
In addition to our analytical results and numerical approximations 
(Supplementary Tables 1–6), we employ simulations to estimate the 
players’ payoffs and cooperation rates (Supplementary Tables 7 and 
8). For these simulations, we conducted 1,000 independent computer 
experiments between any given pair of players (repeated prisoner’s 
dilemma games) and any given group of four players (repeated public 
goods games). In each experiment, players interact in the game for 
10,000,000 rounds. We calculate the average payoffs of the players 
across all rounds, and we count how often each player cooperates. 
The payoffs and cooperation rates are then averaged over the 1,000 
experiments (over 100 experiments in the case of stochastic games). 
We have run these simulations for different parameter combinations. 
Unless noted otherwise, we implement CURE with a tolerance threshold 
of Δ = 1. For the payoffs of the repeated prisoner’s dilemma, we take 
the values used by Axelrod2 as a default (that is, T = 5, R = 3, P = 1 and 
S = 0). Furthermore, we considered three different noise rates: low (1%), 
medium (5%) and high (10%). The parameters of the stochastic games 
and the multiplayer games are illustrated in Fig. 5. For the exact setup 
of the simulations used for this model extension, see Supplementary 
Information Section 10.

Simulating the frequency dynamics of strategies
To explore the evolution of strategy frequencies in populations of 
players, we consider several different scenarios:
 (i) Pairwise competitions between CURE and one other strategy 

(Fig. 2 and Supplementary Figs. 2–7). The other strategy is 
either ALLC, ALLD, TFT, GTFT, contrite tit-for-tat (CTFT), WSLS, 
an extortionate strategy, SoftMajority or HardMajority.

 (ii) A three-strategy competition between ALLC, ALLD and CURE 
(Supplementary Figs. 8 and 9).

 (iii) Simulations of heterogeneous populations consisting of memo-
ry-1 strategies and CURE in repeated games (Figs. 3 and 4 and 
Supplementary Figs. 10–17).

 (iv) Simulations of heterogeneous populations consisting of memo-
ry-1 strategies and CURE in stochastic games (Fig. 5b,c).

 (v) Simulations of heterogeneous populations consisting of memo-
ry-1 strategies and CURE in multiplayer games (Fig. 5e,f).

 (vi) Simulations in which different variants of CURE (with different 
tolerance levels) compete (Supplementary Fig. 18)

 (vii) Simulations in which CURE competes with selected memory-2 
and memory-3 strategies (Supplementary Fig. 19).

Each simulation consists of two steps. First, we obtain the payoffs 
π(σi, σj) between two strategies σi and σj. The previously described 
simulation-based estimation is used to obtain the payoffs in most 
cases, including the payoff between two cumulative reciprocators, and 
those between a cumulative reciprocator and a player who uses either 
an arbitrary memory-1 strategy or one of the nine strategies selected 
in two-strategy competitions. For the payoffs between two memory-1 
strategies, we use the analytical solution of Press and Dyson29.

Second, we calculate the strategies’ frequencies during the process 
through the ‘survival of the fittest’ in a noisy environment based on the 
obtained payoffs between pairs of strategies. In each generation, the 
evolutionary fitness of each strategy is calculated. Following Nowak 
and Sigmund’s approach10, the fitness of a strategy σi is defined by its 
cumulative payoff when playing the repeated game with the entire 
population, that is, f (σi) = ∑n

j=1 xj × π(σi,σj), where n is the number of 
strategies in the population, and xi and xj are the frequencies of σi and 
σj, respectively. We denote the overall fitness of all strategies by 
̄f = ∑n

i=1 xif(σi). The frequency of σi in the next generation is determined 
to be x′i = xi × f(σi)/ ̄f . This elementary updating process is repeated for 
many generations.

To simulate evolution in two-strategy populations, each simula-
tion ends if the frequency of each strategy no longer changes, indicat-
ing two possible steady states (that is, either the full invasion of one 
strategy into the other or the coexistence of the two strategies). One 
million generations are executed in each simulation for three-strategy 
populations and populations of multiple strategies. When simulating 
the frequency dynamics of strategies in heterogeneous populations, 
we sometimes allow for mutations. In that case, mutations are intro-
duced after 2,000 generations of a simulation. The mutation rate is 
set to 10%. When a mutation occurs, all other strategies decrease their 
proportions to 99.9%, while a strategy is randomly selected to increase 
its proportion by 0.1%.

Behavioural experiments
The data in Fig. 6 display the results from an economic experiment. For 
this experiment, we recruited subjects through the online platform 
Prolific (www.prolific.co). In total, we report data from 172 subjects, all 
of whom gave their informed consent to participate. Participants were 
randomly allocated to one of two possible treatments. In both treat-
ments, participants engaged in a repeated prisoner’s dilemma based 
on our baseline payoff values (in UK pence: R = 15p, S = 0p, T = 25p and 
P = 5p, which correspond to the values used by Axelrod multiplied by 
a factor of five). Moreover, in both treatments, participants engaged 
for at least 20 rounds. After the 20th round, there is a constant stop-
ping probability of 1/2 after each round, to avoid end-game effects. 
For better comparison, we only use data from the first 20 rounds for 
our statistical analysis.

The two treatments differ in how the players’ intended actions are 
implemented. In the treatment without errors, all the players’ decisions 
are implemented faithfully. In the treatment with errors, the players’ 
decisions are mis-implemented with a probability of 10%. In case of an 
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error, an intended cooperation is executed as a defection, and vice versa. 
Participants know the overall error probability, and they learn whether 
their own decision was mis-implemented. However, they do not know 
whether or not the co-player’s decision was implemented faithfully.

In each round, participants learn how often each player has cooper-
ated so far (in the treatment with errors, this number refers to how often 
a player’s decision was implemented as cooperation). Thereafter, they 
make their decision of whether to cooperate in the next round. After 
both players have made their decision, the (implemented) outcome 
of that round is displayed.

To explore the extent to which human play is predicted by various 
well-known cooperative strategies, we consider eight possible template 

strategies: GRIM, tit-for-tat (TFT), firm-but-fair (FBF), WSLS, AON2, 
TFT-ATFT, CAPRI and CURE (with a threshold of Δ = 3). The first four 
strategies cooperate in the first round. Thereafter, their response is 
given by the memory-1 vectors

pGRIM = (1,0,0,0), pTFT = (1,0, 1,0), pFBF = (1,0, 1, 1), pWSLS = (1,0,0, 1).

For the higher-memory strategies AON2
20, TFT-ATFT28 and CAPRI21, 

we provide the definitions of the implemented strategies in Supplemen-
tary Information Section 11. For each participant, we compute how many 
of the participants’ decisions are correctly predicted by each of these 
eight template strategies. The corresponding results are displayed in 
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Fig. 6 | CURE in an economic experiment. To explore the relevance of CURE for 
human decision-making, we implemented an economic experiment based on the 
repeated prisoner’s dilemma (see Methods for details). The experiment consists 
of two treatments: one treatment without errors, and one treatment with a 10% 
error rate. For each treatment, we report data from n = 43 pairs of participants. 
Here, we show the results with respect to the players’ implemented decisions. 
a, As one may expect, there is more cooperation in the absence of errors 
(73.3% versus 62.7%, Mann–Whitney U test, P = 0.018). b, In both treatments, 
cooperation rates are slightly decreasing in time. c, To capture the participants’ 

behaviour, we explore how many of their 20 decisions are explained by one of 
eight possible strategies. Without errors, all the considered strategies predict the 
participants’ behaviour equally well. With errors, only CURE correctly predicts 
the behaviour of a substantial proportion of the subjects for all 20 rounds (this 
difference is significant, see Supplementary Information Section 11 for details). 
In a, dots represent the outcome of individual groups, error bars represent s.e.m. 
and the asterisk represents significance at P < 0.05. In b, the thick line represents 
averages, whereas the thin lines again represent s.e.m. All statistical tests are two-
tailed and non-parametric. We do not adjust for multiple comparisons.
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Fig. 6c. For a more detailed description of the experimental methods, 
see Supplementary Information Section 11. The collected data and 
screenshots of our interactive game software are available online57.

Statistics and reproducibility
For our behavioural experiment, all statistical tests are two-tailed and 
non-parametric. No statistical method was used to predetermine sam-
ple size. Results are based on the data of all 172 subjects who finished 
the experiment, not considering 15 subjects who dropped out during 
the instructions or 2 more subjects who dropped out during the experi-
ment. Assignment to treatments was randomized. For further details 
on the study design, see Supplementary Information Section 11. The 
computer code for our simulations and for our behavioural experi-
ments, as well as the resulting data, are available online57.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
Source data for Figs. 2, 3, 4 and 6 are available with this manuscript. 
Source data for Fig. 5 are available on Zenodo58.

Code availability
All Java codes based on Eclipse (version Oxygen.3a release 4.7.3a), 
MATLAB codes (MATLAB 2020b) and oTree software (version 5.8.0b5, 
based on Python 3.8.10) can be obtained from Code Ocean57.
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Study description In this study we combine mathematical analyses, large-scale computational simulations, and an economic experiment. We first 
mathematically derived the basic properties of cumulative reciprocity (CURE). The simulation experiment further verifies these 
properties, and it analyzes the performance of CURE in evolving populations. Finally, we test the relevance of cumulative reciprocity for 
human behavior through an economic experiment. 
For the economic experiment, participants were matched in pairs. Each pair was randomly assigned to one of two treatments, with and 
without errors (Fig. 6). Each round, participants decided whether  to cooperate or to defect. If both participants cooperate, each of them 
obtain 15 pence; if both defect,  each of them obtain 5 pence;  otherwise, the defector gets 25 pence and the cooperator obtains 0 
pence.  Without errors, the players’ decisions are implemented perfectly. With errors, whenever a focal participant chooses to cooperate 
(defect), there is a 10% chance that the decision is mis-implemented as a defection (cooperation).  Each participant received a fixed 
show-up fee and a variable bonus (the game payoff).

Research sample For our computer simulations, we simulated the evolution of 2, 3, 17, 257, 14642 strategies according to the different scenarios we 
consider. For our economic experiment, we recruited N = 189 participants on the online platform Prolific (www.prolific.co). 

Sampling strategy For our economic experiment, we consider pairs of players as our statistical unit. Therefore, we have a statistical sample size of n = 43 for 
each of our two treatments.

Data collection The simulation data was collected by running some pre-set code packages (The methods are all used in previous studies, please see the 
Method in the main text). 
For the economic experiment, we collected the data using an interface implemented with the platform oTree.  The interactive task is run 
fully online without the presence of experimenter, who is not blind to neither the experimental condition or study hypothesis. Once the 
experiment is programmed and launched on the recruitment platform Prolific, data collection proceeds automatically and independently 
of the researcher. The researcher is only available for questions via the messaging feature of Prolific. Once data collection is complete,  
the data can be downloaded as a csv file for offline analysis.

Timing The data of the economic experiment was collected on March 31, 2022, over two experimental sessions. Each session has a fixed target 
number of participants and stops automatically when this number is reached (about 2 hours). 

Data exclusions For the statistical analysis of our economic experiment, we have only used the first 20 rounds of groups that completed the experiment.  
Our results remain qualitatively unchanged if all groups and all rounds were considered. We provide a detailed drop-out analysis in the SI 
Section 11.

Non-participation Fifteen participants of the economic experiment dropped out during the game’s instructions. In addition, one group of 2 participants 
dropped out during the actual experiment (in the treatment without errors).

Randomization For the simulations, randomization is generated by random functions in the program. 
For the experiment, participants were randomly matched to pairs, and each pair was randomly assigned to one of the two treatments. 
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Human research participants
Policy information about studies involving human research participants

Population characteristics Our study population is UK residents drawn from the online platform Prolific. The sample was made of 122 females, 49 males, 1 
did not say (excluding the 17 participants who dropped out.) 

Recruitment Participants were recruited on the online platform Prolific through a standard procedure by describing the nature of this 
research, the length of the task, and the payoff for participating and the potential for an additional bonus payment depending on 
decisions made during the study. For details, see SI Section 11.
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