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Abstract
Evolutionary game theory and models of learning provide powerful frameworks to describe
strategic decision-making in social interactions. In the simplest case, these models describe
games among two identical players. However, many interactions in everyday life are more
complex. They involve more than two players who may differ in their available actions and
in their incentives to choose each action. Such interactions can be captured by asymmetric
multiplayer games. Recently, introspection dynamics has been introduced to explore such
asymmetric games. According to this dynamics, at each time step players compare their cur-
rent strategy to an alternative strategy. If the alternative strategy results in a payoff advantage,
it is more likely adopted. This model provides a simple way to compute the players’ long-run
probability of adopting each of their strategies. In this paper, we extend some of the previous
results of introspection dynamics for 2-player asymmetric games to games with arbitrarily
many players. First, we derive a formula that allows us to numerically compute the stationary
distribution of introspection dynamics for any multiplayer asymmetric game. Second, we
obtain explicit expressions of the stationary distribution for two special cases. These cases
are additive games (where the payoff difference that a player gains by unilaterally switching
to a different action is independent of the actions of their co-players), and symmetric multi-
player games with two strategies. To illustrate our results, we revisit several classical games
such as the public goods game.
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1 Introduction

Social behavior has been studied extensively through pairwise interactions [37]. Despite their
simplicity, they provide important insights, such as how populations can sustain cooperation
[8, 50, 52].Yet,many interesting collective behaviors occurwhenmultiple individuals interact
simultaneously [5, 6, 30, 34, 56, 58, 64, 77, 86].Most of these situations cannot be captured by
the sum of several pairwise interactions. Thus, to account for such nonlinearities, one needs
to consider multiplayer games [30]. For example, a well-known effect that only emerges
when more than two players are present is the “second-order free-riding problem" [20]. A
natural solution to maintain pro-social behavior in a community is to monitor and punish
defectors (and/or reward cooperators). However, most forms of sanctioning are considerably
costly [33]. Therefore, an additional (second-order) dilemma emerges: individuals would
like cooperation to be incentivized but they prefer that others pay the associated costs.

Another interesting effect that can be explored with multiplayer games is the scale or
size of the interaction itself. In situations that require some sort of coordination and where
expectations on others play an important role in one’s decisions, a growing group size might
hinder the optimal outcome [77]. Likewise, it has been shown that it is hard to cooperate
in large groups [34, 63, 71]. This is not, however, a general effect [28]. Additionally, group
size can vary in a population of players. There, not only the average group size can have an
important effect, but also the variance of the group size distribution [16, 61] and the group
size distribution itself [62].

Complexity further increases when players differ significantly among themselves. This
diversity can be captured by asymmetric games [26, 32, 35, 36, 44, 55, 73, 78, 85]. In
symmetric games, all players are indistinguishable. Thus, to fully characterize the state of
the game, we only require to know the number of players playing each strategy. Conversely,
in asymmetric games, players can differ in their available actions and in their incentives
to choose each action. Therefore, they can have uneven effects on others’ payoffs too. For
example, in public goods games and collective-risk dilemmas, players can have different
initial endowments (or wealth), productivities, costs, risk perceptions, or risk exposures [1,
32, 46, 47, 84, 87]. Hence, to fully describe the state of the game, we need to know the action
of each player. This greatly increases the size of the game’s state space; even more so, for
more than two players.

Models from evolutionary game theory (EGT) [37, 42, 43, 51] and learning theory [22, 40,
59, 70], have been widely used to study strategic behavior. The concept of evolutionary stable
strategy, originally proposed for pairwise encounters [43], was extended tomultiplayer games
[15, 17, 58]. Also the well-known replicator equation [37, 79] can easily account for multi-
player games [19, 27, 31, 64]. More recently, the replicator-mutator equation was applied to
study the dynamics of multiplayer games, too [41]. As for asymmetric games, a few addi-
tional assumptions are needed in the description of the model. For example, if there are two
different types of players, typically, either there are two populations co-evolving (“bimatrix
games" [29, 37, 81]) or there is a single population of players where each can play the two
types or roles (“role games") [37]. The case of asymmetric games with more than two players
is substantially less studied within deterministic EGT. Gokhale and Traulsen and Zhang et
al. are two exceptions [29, 89]. Notably, although these works study multiplayer games, they
consider, at most, two different types (drawn from two populations), which leaves out the
exploration of full asymmetry. Also stochastic evolutionary game dynamics [54, 80] provides
several models for studying multiplayer and asymmetric games. Fixation probabilities [23]
in asymmetric 2-player [76], asymmetric 3-player games [74], and symmetric multiplayer
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games [27, 39] were recently derived. Furthermore, average strategy abundances [3, 4] were
obtained only for 2−player asymmetric games [55, 75] or multiplayer symmetric games [12,
28, 38]. For a review on evolutionary multiplayer games both in infinitely large populations
and in finite populations, we refer to Gokhale and Traulsen [30]. Learning models (of strate-
gic behavior) take a different approach from EGT [9, 10, 22, 24, 36, 40, 59, 70, 82]. There
is no evolution of strategies in a population necessarily, but a process by which individuals
learn strategies dynamically.

Introspection dynamics has recently proven to be a useful learning model for tackling
(a)symmetric games [18, 32, 45, 69, 72]. In here, players update their strategies by exploring
their own set of strategies in the following simple way: each time, after a round of the game, a
random player considers a random alternative strategy; they compare the payoff that it would
have given them to their current payoff; if the new strategy would provide a higher payoff, it
is more likely adopted on the next round. We describe the model formally in the next section.
While in Couto et al. [18] only 2−player games were considered, this framework is general
enough to account for multiple players. Particularly, introspection dynamics allows a natural
exploration of full asymmetry in many-player games compared to population models. For
example, in imitation dynamics, one needs to specify who is being imitated by whom [84].
When players differ, it might not make sense to assume that they imitate others. Introspection
avoids this assumption because players’ decisions only depend on their own payoffs. An
existing model that shares this same property is the logit-response dynamics or, simply, logit
dynamics [2, 7, 13]. Unlike introspection dynamics, at each time, the randomly drawn player
to update their strategy, can switch to any other strategy with a non-zero probability. This
probability grows with the payoff provided by each strategy at the (possible) future state. The
probability of switching functions of introspection dynamics and logit dynamics is similar
in their exponential shape; hence, the two processes have some interesting connections.

Here, we extend previous results of pairwise games under introspection dynamics [18]
to multiplayer games. First, we derive a formula that allows us to numerically compute
the stationary distribution of introspection dynamics for any multiplayer asymmetric game.
Second, we obtain explicit expressions of the stationary distribution for two special cases.
These cases are additive games (where the payoff difference that a player gains by unilaterally
switching to a different action is independent of the actions of their co-players), and symmetric
multiplayer gameswith two strategies. To illustrate our theoretical results, we analyze various
multiplayer asymmetric social dilemmas, extending the framework in [31] to asymmetric
games. We also study the asymmetric version of a public goods game with a rewarding stage
[57]. Finally, we compare introspection dynamics with logit dynamics, in the Appendix,
where we show that the two processes have equivalent stationary distributions for some
particular games (namely, 2-strategy, potential and additive games).

2 Model of Introspection Dynamics in Multiplayer Games

We consider a normal form gamewith N (≥ 2) players. In the game, a player, say player i , can
play actions from their action set, Ai := {ai,1, ai,2, ..., ai,mi }. The action set of player i has
mi actions. In this model, players only use pure strategies. Therefore, there are finitely many
states of the game. More precisely, there are exactly m1 ×m2 × ...×mN states. We denote a
state of the game by collecting the actions of all the players in a vector, a := (a1, a2, ..., aN )

where a ∈ A := A1 × A2 × ... × AN and ai ∈ Ai . We also use the common notation,
a := (ai , a−i ) to denote the state from the perspective of player i . In the state (ai , a−i ),
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player i plays the action ai ∈ Ai and their co-players play the actions a−i ∈ A−i where A−i

is defined as A−i := ∏
j �=i A j . The payoff of a player depends on the state of the game. We

denote the payoff of player i in the state a with πi (a) or πi (ai , a−i ). In this paper, we use
bold font letters to denote vectors and matrices. We use the corresponding normal font letters
with subscripts to denote elements of the vectors (or matrices). Since players only use pure
strategies in this model, we use the terms strategies and actions interchangeably throughout
the whole paper.

In this model, players update their strategies over time using introspection dynamics [18].
At every time step, one randomly chosen player can update their strategy. The randomly
chosen player, say i , currently playing action ai,k , compares their current payoff to the
payoff that they would obtain if they played a randomly selected action ai,l �= ai,k from their
action setAi . This comparison is done while assuming that the co-players do not change their
respective actions. When the co-players of player i play a−i , player i changes from action
ai,k to the new action ai,l in the next round with probability

pai,k→ai,l (a−i ) = 1

1 + e−β(πi (ai,l , a−i ) − πi (ai,k, a−i ))
. (1)

Here β ∈ [0,∞) is the selection strength parameter that represents the importance that
players give to payoff differences while updating their actions. For β = 0, players update to
a randomly chosen strategy with probability 0.5. For β > 0, players update to the alternative
strategy under consideration with probability greater than 0.5 (or less than 0.5) if the switch
gives them an increase (or decrease) in the payoff.

Introspection dynamics comprises a Markov chain and can be studied by analyzing the
properties of the corresponding transition matrix T. The transition matrix element Ta,b
denotes the conditional probability that the game goes to the state b in the next round if
it is in state a in the current round. In order to formally define the transition matrix, we first
need to introduce some notations and definitions. We start by defining the neighborhood set
of state a.

Definition 1 (Neighborhood set of a state) The neighborhood set of state a, Neb(a), is defined
as:

Neb(a) := {b ∈ A
∣
∣ ∃ j : b j �= a j ∧ b− j = a− j }. (2)

In other words, a state in Neb(a) is a state that has exactly one player playing a different
action than in state a. For example, consider the game where there are three players and
each player has the identical action set {C,D}. The state (C,C,D) is in the neighborhood
set of (C,C,C) whereas the state (C,D,D) is not. Two states that belong in each other’s
neighborhood set only differ in exactly a single player’s action (and, we call this player as
the index of difference between the neighboring states).

Definition 2 (Index of difference between neighboring states) If two states, a and b, satisfy
a ∈ Neb(b), the index of difference between them, I(a,b), is the unique integer that satisfies

aI(a,b) �= bI(a,b). (3)

In the previous example, the index of difference between the neighboring states (C,C,C)

and (C,C,D) is 3. Using the above definitions, one can formally define the transition matrix
of introspection dynamics by
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Ta,b =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
N (m j−1) · pa j→b j (a− j ) if b ∈ Neb(a) and, j = I(a,b)

0 if b /∈ Neb(a)

1 − ∑
c �=b Ta,c if a = b

. (4)

The transition matrix is a row stochastic matrix (the sums of the rows are 1). This implies
that the stationary distribution of T, a left eigenvector of T corresponding to eigenvalue 1,
always exists. We introduce a sufficient condition for the stationary distribution of T to be
unique.

When the selection strength, β, is finite, the transition matrix of introspection dynamics
has a unique stationary distribution. A finite value of β results in a transition of non-zero
probability between neighboring states. Since no state is isolated (i.e., every state belongs in
the neighborhood set of another state) and there are only finitely many states of the game,
every state is reachable in a finite number of steps from any starting point. The transition
matrix, T, is therefore primitive for a finite β. By the Perron–Frobenius theorem, a primitive
matrix, T, will have a unique and strictly positive stationary distribution u := (ua)a∈A which
satisfies the conditions:

uT = u (5)

u1 = 1 (6)

where 1 is the column vector with the same size as u and has all elements equal to 1. For all
the analytical results in this paper, we consider β to be finite so that stationary distributions
of the processes are unique.

The above equations only present an implicit representation of the stationary distribution
u. The stationary distribution can be explicitly calculated by the following expression (which
is derived using Eqs. 5 and 6),

u = 1ᵀ(1 + U − T)−1 (7)

where U is a square matrix of the same size as T with all elements equal to 1 and 1 is the
identity matrix. The matrix 1+U−T is invertible when T is a primitive matrix [18]. Using
Eq. (7), one can compute the unique stationary distribution of introspection dynamics (with
a finite β) for any normal form game (with arbitrary number of asymmetric players and
strategies).

The stationary distribution element ua is the probability that the state a will be played by
the players in the long-run. Using the stationary distribution, one can calculate the marginal
probabilities corresponding to each player’s actions. That is, the probability that player i
plays action a ∈ Ai in the long-run, ξi,a , can be computed as

ξi,a :=
∑

q∈A−i

u(a,q). (8)

3 Additive Games and Their Properties Under Introspection Dynamics

In this section, we discuss the stationary properties of introspection dynamics when players
learn to play strategies in a special class of games: additive games. In an additive game,
the payoff difference that a player earns by making a unilateral switch in their actions is
independent of what their co-players play. In other words, if none of the co-players change
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their current actions, the payoff difference earned by making a switch in actions is only
determined by the switch and not on the actions of the co-players’. Formally, in additive
games, for any player i , any pair of actions x, y ∈ Ai , and any q ∈ A−i ,

πi (x,q) − πi (y,q) =: fi (x, y) (9)

is independent ofq and only dependent on x and y. In the literature, this property is sometimes
called equal gains from switching [53, 83]. For games with this property, the stationary
distribution of introspection dynamics takes a simple form.

Proposition 1 When β is finite, the unique stationary distribution, u = (ua)a∈A, of intro-
spection dynamics for an N−player additive game is given by

ua =
N∏

j=1

1
∑

a′∈A j

eβ f j (a′,a j )
(10)

where f j (a′, a j ) is the co-player independent payoff difference given by Eq. (9).

For all proofs of Propositions and Corollaries, please see Appendix 2. Using the stationary
distribution and Eq. (8), one can also exactly compute the cumulative probabilities with
which players play their actions in the long-run (i.e., the marginal distributions). In this
regard, introspection learning in additive games is particularly interesting. The stationary
distribution and the marginal distributions of introspection dynamics in additive games are
related in a special way.

Proposition 2 Let u = (ua)a∈A be the unique stationary distribution of introspection dynam-
ics with finite β for an N−player additive game. Then, ua is the product of the marginal
probabilities with which each player plays their respective actions in a. That is,

ua =
N∏

j=1

ξ j,a j . (11)

For an N-player additive game, ξ j,a j is given by

ξ j,a j = 1
∑

a′∈A j

eβ f j (a′,a j )
(12)

where f j (a′, a j ) is the co-player independent payoff difference given by Eq. (9).

The above proposition states that for additive games, the stationary distribution of intro-
spection dynamics can be factorized into its corresponding marginals. In the long-run, the
probability that players play the state a = (a1, a2, ..., aN ) is the product of the cumulative
probabilities that player 1 plays a1, player 2 plays a2 and so on. This property of the additive
game was already shown for the simple 2−player, 2−action donation game in Couto et al.
[18]. Here, we extend that result for any additive game with arbitrary number of players,
each having an arbitrary number of strategies. In the next section, we use the well-studied
example of the linear public goods game (an additive game) to illustrate these results.
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3.1 Example of an Additive Game: Linear Public Goods Gamewith 2 Actions

In the simplest version of the linear public goods game (LPGG) with N players, each player
has two possible actions, to contribute (action C, to cooperate), or to not contribute (action
D, to defect) to the public good. The players may differ in their cost of cooperation and the
benefit they provide by contributing to the public good. We denote the cost of cooperation
for player i and the benefit that they provide by ci and bi , respectively. We define an indicator
function α(.) to map the action of cooperation to 1 and the action of defection to 0. That is,
α(C) = 1 and α(D) = 0. The payoff of player i when the state of the game is a is given by

πi (a) = 1

N

N∑

j=1

α(a j )b j − α(ai )ci . (13)

The payoff difference that a player earns by unilaterally switching from C to D (or vice-
versa) in the linear public goods game is independent of what the other players play in the
game. That is, for every player i ,

πi (D,q) − πi (C,q) = ci − bi
N

=: fi (D,C) (14)

is independent of co-players’ actions q. The linear public goods game is therefore an exam-
ple of an additive game. This property of the game results in easily identifiable dominated
strategies. For player i , defection dominates cooperation when ci > bi/N while cooperation
dominates defection when ci < bi/N . Using Proposition 1, one can derive the closed-form
expression for the stationary distribution of an N−player linear public goods game with two
strategies.

Proposition 3 When β is finite, the unique stationary distribution of introspection dynamics
for an N−player linear public goods game is given by

ua =
N∏

j=1

1

1 + esign(a j )β f j (D,C)
(15)

where

sign(a) =
{

1 if a = C

− 1 if a = D
. (16)

We use a simple example to illustrate the above result. Consider a 3−player linear public
goods game. All players provide a benefit of 2 units when they contribute to the public good
(b1 = b2 = b3 = 2). They differ, however, in their cost of cooperation. For player 1 and
2, the cost of cooperation is 1 unit (c1 = c2 = 1) while for the third player, the cost is
1.5 units (c3 = 1.5). In the stationary distribution of the process with selection strength
β = 1, the cumulative probability that player 1 (or 2) cooperates and player 3 defects are
ξ1,C = ξ2,C = 0.417 and ξ3,D = 0.697, respectively. With the exact values, one can confirm
the factorizing property of the stationary distribution for additive games in this example (i.e.,
Proposition 2). That is, uCCD = 0.121 = ξ1,C · ξ2,C · ξ3,D.

We now use Eq. (15) to systematically analyze the LPGG under introspection dynamics.
First, we study the simple case of 4−player symmetric LPGG (the cost and benefit for all
the 4 players are c and b). Since all players are identical, the states of the game can be
enumerated by counting the number of cooperators in the state. There are only 5 distinct
states of the game (from 0 to 4 cooperators). When the parameters of the game are such that
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defection dominates cooperation (b = 2, c = 1, Fig. 1a), the stationary distribution of the
process at high β indicates that in the long-run, states with higher number of cooperators
are less likely than states with lower number of cooperators. However, for intermediate and
low β, stationary results are qualitatively different. Here, the state with 1 cooperator (or
even 2 cooperators, depending on how small β is) is the most probable state in the long-run
(Fig. 1b). Since every possible state is equiprobable in the limit of β → 0, the outcome with
2 cooperators is most likely only because there are more states with 2 cooperators than states
with any other number of cooperators.

Naturally, β plays an important role in determining the overall cooperation in the long-
run. When β is low, average cooperation varies weakly with the strength of the dilemma,
b/N − c (Fig. 1c). Even when the temptation to defect is high (b/N − c = −2), players
cooperate with a non-zero probability. Similarly, when cooperation is highly beneficial and
strictly dominates defection (b/N − c = 2), players defect sometimes. At higher values of
β, the stationary behavior of players is more responsive to the payoffs and thus reflects an
abrupt change near the parameters where the game transitions from defection-dominating to
cooperation-dominating (b/N − c = 0).

To study what effects might appear due to asymmetry in the LPGG, we consider the game
with 3 asymmetric players. All the players can differ in their cost of cooperation and the
benefit they provide to the public goods. In this setup, the cost and benefit values of the
reference player (player 2) are 1 and 2 units, respectively. Player 1 and player 3 differ from
the reference player in opposite directions. For player 1, the cost and benefit are 1 + δc and
2+δb, respectively, while for player 3, the cost and benefit are 1−δc and 2−δb, respectively.

Fig. 1 Introspection dynamics in a symmetric linear public goods game. Stationary distribution of the intro-
spection dynamics for a linear public goods game with four identical players. For all the panels in this figure,
the following parameters are used: N = 4 (group size), b = 2 (benefit provided to the public good upon coop-
eration), c = 1 (cost of cooperation). a Frequency of each state in the stationary distribution of introspection
dynamics. As players are identical, each state can be defined by the number of cooperators. For a selection
strength of β = 5, states with more cooperators are less likely than states with less cooperators. b Frequency
of each state for varying selection strength, β. The color code is the same as panel (a). Comparing neutrality
(β = 0) with low to intermediate β values, selection favors states other than 0 cooperators. Indeed, up to
β ≈ 3, state 0 is not the most frequent state in the long-run. c Average cooperation frequency for varying
dilemma strength depends on the selection strength, β. We use the marginal gain of choosing cooperation over
defection, b/N − c, as a measure of the dilemma strength. When this quantity is negative and low, we say that
the dilemma is strong. In this case, choosing cooperation is strictly disadvantageous. When this quantity is
positive and high, we say that the dilemma is weak. In this case, cooperation dominates defection. Typically,
a linear public goods dilemma is defined to have a negative marginal gain. Here, the dilemma strength varies
from −2 to 2. The results are shown for different values of selection strength, β = 1, 5 and 100. For high β,
stationary distribution of the introspection dynamics reflects the rational play. In the long-run, players play the
Nash equilibrium. When marginal gain is negative, defection is played with almost certainty (and vice-versa).
For low β, however, some cooperation is possible even when the dilemma is strong
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Fig. 2 Introspection dynamics in an asymmetric linear public goods game. Cooperation probabilities of the
introspection dynamics for a linear public goods game with three asymmetric players. For each of the upper
panels (a and b), we show the cost of cooperation and the benefit provided upon cooperation for the players
on the left and the average cooperation frequency in the long-run on the right. In c, the asymmetry strengths
between the players,δc and δb , varies simultaneously. Both average individual cooperation frequency and the
overall average cooperation frequency in the long-run is shown. The reference player’s cost and benefit are
again 1 and 2 units, respectively. The area within the white dashed lines represents the parameter values for
which the marginal gain of choosing cooperation over defection is negative, for each single player and, in the
right-most panel, for all players simultaneously. In this example, cooperation is only feasible in the long-run
if the asymmetries of players are aligned. That is, overall cooperation is high only when the individual with a
low cost of cooperation has a high benefit value. For panels (a) and (b) selection strength is β = 2 while for
panel (c), β = 5

The terms δb and δc represents the strength of asymmetry between the three players (a higher
absolute value of δ indicating a bigger asymmetry). When the players only differ in their cost
of cooperation (δb = 0 and δc = 0.5, Fig. 2a, left), their relative cooperation in the long-run
reflects their relative ability to cooperate. The player with the lowest cooperation cost (player
3), cooperates with the highest probability (and vice-versa, Fig. 2a, right). Similarly, when
players only differ in their ability to produce the public good (δb = 1 and δc = 0, Fig. 2b
left), their relative cooperation in the long-run reflects the relative benefits they provide
with their cooperation (Fig. 2b, right). In this example, if we consider that the reference
player provides a benefit of 2 units and has a cost of 1 unit (in which case, defection always
dominates cooperation for them), defection dominates cooperation for player 1 if and only
if δb < 1 + 3δc and, for player 3, only when δb > 3δc − 1. These regions in the δb − δc
parameter plane that correspond to defection dominating cooperation are circumscribed by
white dashed lines in Fig. 2c. When players learn to play at high selection strength, β, their
cooperation frequency in the long-run reflects the rational play (Fig. 2c). In the long-run, the
average cooperation frequency of the group is low if the asymmetry in the benefit value is
bounded as 3δc − 1 < δb < 3δc + 1. This includes the case where players are symmetric
(δb = δc = 0). A relatively high cooperation is only assured if players are aligned in their
asymmetries (i.e., either δb < 3δc + 1 or δb > 3δc − 1). Or, in other words, if the player that
has low cost of cooperation also provides a high benefit upon contribution, then cooperation
is high in the long-run.
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4 Games with Two Actions and Their Properties Under Introspection
Dynamics

In the previous section, we studied the properties of additive games under introspection
dynamics. In this section, we study games that are a) not necessarily additive and b) have
only two actions for each player. First, we study the symmetric version of such a game. An
N -player symmetric normal form game with two actions has the following properties:

1. All players have the same action set A := {C,D}. That is, A1 = A2 = ... = AN := A.
2. Players have the same payoff when they play the same action against the same compo-

sition of co-players. That is, for any i, j ∈ {1, 2, ..., N }, a ∈ A and b ∈ AN−1,

πi (a,b) = π j (a,b). (17)

Since players are symmetric, states can again be enumerated by counting the number of
C players in the state. We denote the payoff of a C and D player in a state where there are
j co-players playing C by πC( j) and πD( j), respectively. We denote with f ( j) the payoff
difference earned by switching from D to C when there are j co-players playing C,

f ( j) := πD( j) − πC( j). (18)

The stationary distribution of a 2−action symmetric game under introspection dynamics
can be explicitly computed using the following proposition.

Proposition 4 When β is finite, the unique stationary distribution of introspection dynamics
for an N−player symmetric normal form game with two actions, A = {C,D}, (ua)a∈AN , is
given by

ua = 1

�

C(a)∏

j=1

e−β f ( j−1) (19)

where f ( j) is defined as in Eq. (18) and C(a) is the number of cooperators in state a. The
term � is the normalization factor given by

� =
∑

a′∈AN

C(a′)∏

j=1

e−β f ( j−1). (20)

The number of unique states of the game can be reduced from 2N to N + 1 due to
symmetry. In the reduced state space, the state k corresponds to k players playing C and
N − k players playing D. Then, Proposition 4 can be simply reformulated by relabelling the
states as follows,

Corollary 1 When β is finite, the unique stationary distribution, (uk)k∈{0,1,...,N }, of introspec-
tion dynamics for an N−player symmetric normal form game with two actions,A = {C,D},
is given by

uk = 1

�
·
(
N

k

)

·
k∏

j=1

e−β f ( j−1) (21)

where k represents the number of C players in the state and f ( j) is defined as in Eq. (18).
The term � is the normalization factor, given by
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� =
N∑

k=0

(
N

k

)

·
k∏

j=1

e−β f ( j−1). (22)

The above corollary follows directly from Proposition 4. The key step is to count the number
of states in the state space AN that corresponds to exactly k C players (and therefore N − k
D players). This count is simply the binomal coefficient

(N
k

)
. In the next section, we use the

example of a nonlinear public goods game to illustrate these results.

4.1 An Example of a Gamewith Two Actions: The General Public Goods Game

To study general public goods games, we adopt the framework of general social dilemmas
from Hauert et al. [31]. In the original paper, the authors propose a normal form game with
symmetric players. The game’s properties depend on a parameterw that determines the nature
of the public good. The players have two actions: cooperation, C and defection, D. Here, we
extend their framework to account for players with asymmetric payoffs. Before we explain
the asymmetric setup, we describe the original model briefly. In the symmetric case, all N
players have the same cost of cooperation c and they all generate the same benefit b for the
public good. Unlike the linear public goods game, contributions to the public good are scaled
by a factor that is determined by w and the number of cooperators in the group. The payoff
of a defector and a cooperator in a group with k cooperators and N − k defectors is given by,

πD(k) = b

N

(
1 + w + w2 + · · · + wk−1

)
, (23)

πC(k) = πD(k) − c. (24)

The parameter w represents the nonlinearity of the public good. The game is linear when
w = 1. Every cooperator’s contribution is as valuable as the benefit that they can generate.
When w < 1, the effective contribution of every additional cooperator goes down by a
factor w (compared to the last cooperator). The public good is said to be discounting in this
case. On the other hand, when w > 1, every new contribution is more valuable than the
previous one. The public good is said to be synergistic in this case. For the symmetric case,
the relationship between the cost-to-benefit ratio, cN/b, and the discount/synergy factor, w,
determines the type of social dilemma arising from the game. In principle, this framework
can produce generalizations of the prisoner’s dilemma (D dominating C), the snowdrift
game (coexistence between C and D), the stag-hunt game (no dominance but existence of an
internal unstable equilibrium) and the harmony game (C dominating D) with respect to its
evolutionary trajectories under the replicator dynamics. For more details, see Hauert et al.
[31].

Now, we describe our extension of the original model to account for asymmetric players.
Here, for player i , the cost of cooperation is ci . The benefit that they can generate for the
public good is bi . The benefit of cooperation generated by a player is either synergized (or
discounted) by a factor depending on the number of cooperators already in the group and the
synergy/discount factor, w (just like the original model). However, now, since players are
asymmetric it is not entirely clear in which order the contributions of cooperators should be
discounted (or synergized). For example, consider that there are 3 cooperators in the group:
player p, q and r . The total benefit that they provide to the public good can be one of the six
possibilities from x + yw + zw2, where x, y and z are permutations of bp, bq and br . In this
model, we assume that all such permutations are equally likely, and therefore, the expected
benefit provided by all three of them is given by b̄(1+w+w2)where b̄ = (bp +bq +br )/3.
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The complete state space of the game with asymmetric players is A = {C,D}N . The
payoff of a defector in a state (D, a−i ) and that of a cooperator in state (C, a−i ) where
a−i ∈ {C,D}N−1 are, respectively, given by

πi (D, a−i ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

N∑

j=1

b jα(a j ) · 1

N · C(D, a−i )
·
(
1 + w + w2 + · · ·wC(D,a−i )−1

)
if C(D, a−i ) �= 0

0 if C(D, a−i ) = 0

(25)

πi (C, a−i ) =
N∑

j=1

b jα(a j ) · 1

N · C(C, a−i )
·
(
1 + w + w2 + · · · wC(C,a−i )−1

)
− ci (26)

where C(a, a−i ) counts the number of cooperators in state (a, a−i ) and α(.), as before, maps
the actions C and D to 1 and 0, respectively. Note that the number of cooperators in the two
states are related as: C(D, a−i ) = C(C, a−i )− 1. We are interested in studying the long-term
stationary behavior of players in this game when they learn through introspection. We first
discuss results from the symmetric public goods game and then discuss results for the game
with asymmetric players.

To compute the stationary distribution of introspection dynamics in this game, we use Eq.
(21). In our symmetric example, we consider that every player in an N−player game can
generate a benefit b of value 2. Before exploring the c−w−N parameter space, we study four
specific cases (with a 4−player game). In two of these cases, the public goods is discounted
(w = 0.5, Fig. 3a left panels) and in two other cases, the public goods is synergistic (w = 1.5,
Fig. 3a right panels). For each case, we consider two sub-cases: first, in which cost is high
(c = 1, Fig. 3a top panels) and second, when cost is low (c = 0.2, Fig. 3a bottom panels). The
four parameter combinations are chosen such that each of them corresponds to a unique social
dilemma under the replicator dynamics. When selection strength is intermediate (β = 5),
players sometimes play actions that are not optimal for the dilemma. For example, even when
the parameters of the game make cooperation to be the dominated strategy (w = 0.5, c = 1),
there is a single cooperator in the group in around20%of the cases.When the parameters of the
game reflect the stag-hunt dilemma (c = 1, w = 1.5), players are more likely to coordinate
their actions in the long-run. The probabilities that the whole group plays C or D are higher
than the probabilities that there is a group with a mixture of C and D players. In contrast,
when the parameters reflect the snowdrift game (w = 0.5, c = 0.5), we get the opposite
effect. In the long-run, mixed groups are more likely than homogeneous groups. Finally,
when the parameters of the game make defection the dominated action (w = 1.5, c = 0.2),
all players learn to cooperate in the long-run.

The average cooperation frequency of the group in the long-run is shown in the c−w and
N−w parameter planes in Fig. 3b. First, let us consider the casewhen the group size is fixed at
4 players (the c−w plane in Fig. 3b). In that case, if the cost of cooperation is restrictively high,
the average cooperation rate is negligible and does not change with the nature of the public
good. In contrast, when the cost is not restrictively high, the discount/synergy parameter, w,
determines the frequency with which players cooperate in the long-run. A higher w for the
public good would result in higher cooperation (and vice-versa). Next, we consider the case
where the cost of cooperation is fixed (the N − w plane in Fig. 3b). The cost is fixed to a
value such that in a synergistic public good (w > 1), the cooperation frequency is almost 1 in
the long-run for any group size. In this case, when the public good is discounted, group size
N and the discounting factor w jointly determine the cooperation frequency in the long-run.
In discounted public goods, cooperation rates fall with the increase in group size.
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Fig. 3 Introspection dynamics in a symmetric general public goods game. Introspection dynamics in the
general public goods game with 4 symmetric players, each having two possible actions—cooperation and
defection. For a detailed description of the game, please see the main text. a The frequency of each state
in the stationary distribution of introspection dynamics in four types of multiplayer social dilemmas display
qualitatively different results. The upper panels refer to a high cost of cooperation (c = 1) while the bottom
panels to a low cost of cooperation (c = 0.2); left panels refer to a discounted public good (w = 0.5), and the
right panels refer to a synergistic public good (w = 1.5). Each case is tagged with a symbol that places the
particular case in the contour plot in panel (b). b On the left, the average cooperation frequency for varying
discount/synergy factor, w, and varying cost of cooperation, c is shown. Cooperation is feasible when costs
are not restrictively high and the public good is not too discounted. On the right, the average cooperation
frequency for varying discount/synergy factor, w, and group size N . For this plot, the cost of cooperation for
each player is c = 0.4. The feasibility of cooperation drops with larger group sizes when the public good is
discounted. For all panels, b = 2 and β = 5
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We also study introspection dynamics in this game with asymmetric players. We use
the same setup that we used for studying the asymmetric linear public goods. The aver-
age frequency of cooperation per player is summarized in Supplementary Figs. 1 and 2. In
Supplementary Fig. 1, we study two cases, a first in which the public good is synergistic
and players have a high average cost, and a second in which public good is discounted and
players have a lower average cost. In both of these cases, players cooperate highly when
they simultaneously have low cost and high benefit. The only noticeable difference between
the two cases is the minimum relation between the asymmetries δb and δc that results in
high cooperation for the player with low cost and high benefit. When we observe individual
cooperation frequency versus the synergy/discount factor,w (Supplementary Fig. 2), we find
that when players are symmetric with respect to just benefits (or just costs), the one with the
lowest cost (or highest benefit) cooperates with a high probability across all types of public
goods, even for a high value of average cost.

5 Application: Introspection Learning in a Gamewith Cooperation and
Rewards

In all the examples that we have studied so far, players can only choose between two actions
(pure strategies). Introspection dynamics is particularly useful when players can use larger
strategy sets. As such, in this section, we study the stationary behavior of players in the
N−player, 16−strategy cooperation and rewarding game from Pal and Hilbe [57]. In this
game, there are two stages: in stage 1, players decide whether or not they contribute to a
linear public good and in stage 2, they decide whether or not they reward their peers. When a
player contributes to the public good, they pay a cost ci but generate a benefit worth ri ci that
is equally shared by everyone.When a player rewards a peer, they provide them a benefit of ρ
while incurring the cost of rewarding, γi , to themselves. In between the stages, players get full
information about the contribution of their peers. In the rewarding stage, players have four
possible strategies: they can either reward all the peers who contributed (social rewarding),
reward all the peers who defected (antisocial rewarding), reward all peers irrespective of
contribution (always rewarding) or reward none of the peers (never rewarding). Before stage
1 commences, player i knows with some probability, λi , the rewarding strategy of all their
peers. In stage 1, players can have four possible strategies: they can either contribute or defect
unconditionally or they can be conditional cooperators or conditional defectors. Conditional
cooperators (or defectors) contribute (or do not contribute) when they have no information
about their peers (which happens with probability 1 − λi ). When a conditional player, i ,
knows the rewarding strategy of all their peers (which happens with probability λi ) and
finds that there are nSR social rewarders and nAR antisocial rewarders among their peers,
they cooperate if and only if the marginal gain from rewards for choosing cooperation over
defection outweighs the effective cost of cooperation. That is,

ρ(nSR − nAR) ≥ ci
(
1 − ri

N

)
. (27)

Combining the two stages, players can use one of 16 possible strategies (4 in stage 1
and 4 in stage 2). In the simple case where players are identical, one can characterize the
Nash equilibria of the game and identify the conditions which allow an equilibrium where all
players contribute in the first stage and reward peers in second stage [57]. In the symmetric
case, full cooperation and rewarding is feasible in equilibriumwhen all players have sufficient
information about each other and the reward benefit ρ is neither too high, nor too low. In this
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section, we study three simple cases of asymmetry between players to demonstrate how these
asymmetric players may learn to play the game through introspection dynamics. The three
specific examples that we show demonstrate that with introspection dynamics, asymmetric
players can end up taking different roles in the long-run to produce the public good. To
this end, we consider a 3−player game in which players 1 and 2 are identical but player 3
is asymmetric to them in some aspect. In each case, the asymmetric player either has a) a
higher cost of rewarding γ3 > γ1, b) low productivity r3 < r1, or c) less information about
peers λ3 < λ1 than their peers. We use Eq. (7) to exactly compute the expected abundances
of the 16 strategies for each player.

In the case where player 3 is asymmetric with respect to their cost of rewarding, the long-
run outcome of introspection reflects a division in labor between the players in producing the
public good (Fig. 4a). The players to whom rewarding is less costly (player 1 and player 2),
reward cooperation with a higher probability than to whom rewarding is very costly (player
3). In return, player 3 learns to respond by contributing with more probability than their
co-players. With these specific parameters, one player takes up the role of providing the
highest per-capita contribution while the others compensate with costly rewarding. When the
asymmetric player differs only in their productivity, a different effect may appear in the long-
run (Fig. 4b). In this case, the less productive player free-rides on the cooperation of their
higher productive peers, but eventually reward the cooperation of their peers nonetheless.
The asymmetric player free-rides but does not second-order free ride. The probability with
which the less productive player rewards others in the long-run is slightly higher than the
probability with which the contributing individuals reward each other. Finally, we consider
the case where the asymmetric individual differs from others in terms of the information
players have about others’ rewarding strategy (Fig. 4c). In this case, the asymmetric player
knows others’ strategy with a considerably less chance than their peers. In the long-run, the
asymmetric player cooperates less on average than their peers. This is because the asymmetric
individual faces less instances where they can opportunistically cooperate with their co-
players. However, both types of player reward cooperation almost equally and just enough
to sustain cooperation.

6 Discussion and Conclusion

We introduce introspection dynamics in N -player (a)symmetric games. In this learning
model, at each time, one of the N players updates (or not) their strategy by comparing
the payoffs of two strategies only: the one being currently played and a random prospective
one. Clearly, this assumption implies a simple cognitive process. Players do not optimize
over the entire set of strategies as, for example, in best-response models [13, 25, 36]. One
such model of particular interest due to its connections to introspection dynamics is the logit
dynamics [2, 7, 13]. In Appendix 1, we compare introspection dynamics and logit dynamics.
We show that the two processes have equivalent stationary distributions for 2-strategy games,
potential games and additive games. We also note that there are games for which the station-
ary distributions do not match. For example, we find coordination games with multiple Nash
equilibria for which introspection dynamics and logit dynamics select a different equilibrium.
Interestingly, whether one of the dynamics is better at selecting the higher payoff equilibrium
in coordination games has no trivial answer and remains to be investigated.

Furthermore, although conceptually similar, our model is also simpler than typical rein-
forcement learningmodels. For example,whilewe only have selection strength as a parameter
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Fig. 4 Introspection dynamics in the linear public goods game with peer rewarding. Here, a game with three
asymmetric players, each having 16 possible strategies, is studied. Players cooperate in a linear public goods
and then reward each other in the next stage after everyone’s contribution is revealed. In the first stage, players
can condition their cooperation on the information they have about their co-players’ rewarding strategies.
For a full description of the model, please see the section on rewarding. In this example, players 1 and 2 are
identical in all aspects while player 3 differs from them in only a single aspect. Here, Eq. (7) is used to plot
the exact probability with which players cooperate and reward cooperation in the long-run. There are three
types of asymmetry for player 3. a First, the case where player 3 has a high cost of rewarding compared
to player 1 and 2, 0.7 = γ3 > γ1 = 0.1. b Then, the case where player 3 is less productive than their
co-players, 1.2 = r3 < r1 = 2. c Finally, the case where player 3 has less information about co-players’
rewarding strategies than the others, that is, 0.1 = λ3 < λ1 = 0.9. For all plots, a high value for the selection
strength, β = 10, is considered. Unless otherwise mentioned, the following parameters are maintained for all
panels: ci = 1 (individual cost of cooperation), ri = 2 (individual productivity), γi = 0.1 (individual cost of
rewarding), λi = 0.9 (individual information about co-players’ strategies). In panels (a) and (b), the reward
value is ρ = 0.3 while for panel (c), the reward value ρ = 1

(apart from the payoffs), in Macy and Flache [40], there is a learning rate parameter (which
could be comparable to our selection strength) but also an aspiration parameter which sets
a payoff reference. In our model, the payoff reference is always the current one. All in all,
while at each single time step individuals are restricted to reason over two strategies only, as
they iterate this step over time, they are able to fully explore the whole set of strategies, in a
trial-and-error fashion.

Importantly, ourmodel is alsomuch simpler computationally than the stochastic evolution-
ary game theory framework. While they both can involve solving the stationary distribution
of a Markov process, they differ greatly in the state space size. Population models typically
assume individuals play multiple games against (potentially all) other players in a popu-
lation. As such, the state is defined by the number of players playing each strategy in the
population(s). The number of states rapidly increases with the population size, the number
of strategies, size of interaction and types of players (in the case of asymmetric games).
One can see how the mathematical analysis of multiplayer asymmetric games can become
cumbersome. To deal with this issue, previous models frequently resorted to additional
approximations, like low mutation rate [21, 85] and weak selection [88]. On the contrary,
in introspection dynamics, the states of the Markov process correspond to the outcome of a
single (focal) game: for a N -player game, where player i has mi possible actions, there are
m1 × m2 × · · · × mN states. This feature hugely reduces our state space size, which is key
for obtaining exact results.

Here, we thus provide a general explicit formula, Eq. (7), that easily computes the station-
ary distribution of anymultiplayer asymmetric game under introspection dynamics. Note that
this formula is useful for the exploration of many-strategy games in the full range of selection
strength. Additionally, we show that it is possible to obtain some analytical expressions for
the long-run average strategy abundances. We start by analyzing the set of additive games,
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for which the gain from switching between any two actions is constant, regardless of what
co-players do. Due to this simple feature, additive games allow for the most general close-
form expression for the stationary distribution (regarding the number of players, of strategies,
and asymmetry of the game). We also find that for additive games, the joint distribution of
strategies factorizes over the marginal distribution of strategies. For more general games,
we provide the stationary distribution formula for 2-strategy, symmetric games. Finally, we
study several examples of social dilemmas. From those, we see that, despite the differences
to other models pointed out above, we recover some previous results qualitatively [31]. We
also conclude that players that have a lower cost or a higher benefit of cooperation learn to
cooperate more frequently.

Introspection dynamics is rather broad in its scope. Here, we mainly focus on introducing
a general framework. Still, we provide some examples to illustrate how it can be applied.
Besides the generic public goods game, we study a 2-stage game, where players can choose
among 16 strategies. There, individuals can reward their co-players condition on their pre-
vious cooperative (or not) behavior. Clearly, there are a number of ways in which our model
can be further employed. For example, other researchers recently studied multiplayer games
considering multiple games played concurrently [86], fluctuating environments [11], con-
tinuous strategies [48], or repeated interactions [34, 87]. Also, a number of previous works
considered complex population structures [12, 14, 60, 65–68]. As defined above, introspec-
tion dynamics does not consider a population of players, making it simple to work with.
However, it could be equally applicable to population models. In that case, players would
obtain average payoffs either from well-mixed or network-bounded interactions, as usual,
but update their strategies introspectively.
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Appendix 1: Comparison Between Introspection and Logit-Response
Dynamics

In this section, we discuss some similarities between introspection dynamics and the widely
studied logit-response dynamics (or perturbed best-response dynamics) [2, 13]. In the logit-
response dynamics, at every time step, some set of players are chosen to update their strategies.
The new strategy that a player adopts is drawn from a probability mass function over all of
their strategies. The players construct this probability distribution by exponentially weighing
the payoffs that they would receive if they switch to the new strategy (conditioned on all co-
players’ strategies remaining fixed). Mathematically, the probability that player i switches
to action ai ∈ Ai when the co-players are currently playing a−i , is given by

pLDai (a−i ) := eβπi (ai ,a−i )

∑

a′∈Ai

eβπi (a′,a−i )
(28)

where the scalar β is akin to selection strength in the introspection dynamics.
Note that while making comparisons between the two processes, we only consider a

special case of the logit-response dynamics called the asynchronous learning logit-response
dynamics [13]. From here on, we refer to the asynchronous learning logit-response dynamics
as simply logit-response dynamics. In this process, at every time step, exactly one player is
uniform randomly chosen to update their strategy. The transition probability of going from
state a to state b in the logit-response dynamics can thus be expressed as

TLD
a,b =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
N · pLDb j

(a− j ) if b ∈ Neb(a) and, j = I(a,b)

0 if b /∈ Neb(a)

1 − ∑
c �=b Ta,c if a = b

. (29)

Throughout the rest of this section, we will refer to the transition matrix of the logit-
response dynamics with TLD and the transition matrix of the introspection dynamics, as
given by Eq. (4), with TID. We refer to the respective unique stationary distributions at finite
β with uLD and uID. Our first comparison between the two processes is for games with two
actions.

Proposition 5 In games where mi = 2, for all i ∈ {1, 2, ..., N }, the transition matrix and
the stationary distribution for introspection dynamics and logit-response dynamics are the
same. That is, TLD = TID and uLD = uID.

This proposition states that for games where every player has two available actions (strate-
gies), the processes of introspection and logit-response are equivalent.

We also compare the two processes on two more classes of games—additive and potential
games [49]. We have already defined an additive game earlier. Monderer and Shapley [49]
define potential games as any game where a scalar function φ : A �→ R exists such that for
all i , ai , a′

i ∈ Ai and a−i ∈ A−i ,

πi (ai , a−i ) − πi (a
′
i , a−i ) = φ(ai , a−i ) − φ(a′

i , a−i ). (30)
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Here, the scalar function φ is called the potential of the game. Following this definition, one
can see a potential game as a game where it follows that

πi (ai , a−i ) = φ(ai , a−i ) + σ(a−i ), (31)

where σ(a−i ) := πi (a′, a−i ) − φ(a′, a−i ), for a fixed a′ ∈ Ai , is independent of ai . We
show that, for potential games, introspection dynamics and logit-response dynamics have the
same stationary distribution.

Proposition 6 For a potential gamewith potentialφ, the stationary distributions of introspec-
tion dynamics (with a finite β) and logit-response dynamics (with the same finite parameter
β) are the same and given by

uIDa = uLDa = eβφ(a)

∑

a′∈A
eβφ(a′) . (32)

The above proposition states that both the processes (with the same finite β) lead to identical
stationary distribution for any potential game. The proof of this proposition relies on propo-
sition 1 from Alós-Ferrer and Netzer [2] where a closed-form expression of the stationary
distribution of the logit-response dynamics for a potential game was provided. We obtain a
similar result for additive games.

Proposition 7 For an N−player additive game, the stationary distributions of introspection
dynamics (with a finite β) and logit-response dynamics (with the same finite β) are the same
and given by

uIDa = uLDa =
N∏

j=1

1
∑

a′∈A j

eβ f j (a′,a j )
(33)

where f j (a′, a j ) is the co-player independent payoff difference given by Eq. (9).

To summarize, the two propositions above state that while the transition matrices of the two
processes may be different from each other, the long-run stationary behavior of the players
in potential and additive games are the same.

Appendix 2: Proofs

Proof of Proposition 1 Since β is finite, the stationary distribution u = (ua)a∈A of the process
is unique. The stationary distribution also satisfies the equalities in Eqs. (5) and (6). Before
continuing through the remainder of the proof, we introduce some short-cut notation that we
will be using:

Ib := I(b, a), iff b ∈ Neb(a) (34)

τ j,a j := 1
∑

a′∈A j

eβ f j (a′,a j )
. (35)
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In order to show that the candidate stationary distribution, as proposed in Eq. (10) is the
stationary distribution of the process, we need to show that the following are true:

Ta,aua+
∑

b�=a

Tb,aub = ua ∀a ∈ A (36)

∑

a∈A
ua = 1. (37)

Using our short-cut notation τ and the expression for our candidate stationary distribution in
Eq. (10), we can express the stationary distribution as:

ua =
N∏

j=1

τ j,a j . (38)

Using this expression, the left-hand side of Eq. (36) can be simplified further with the steps:

Ta,aua +
∑

b�=a

Tb,aub (39)

=
⎛

⎝1 − 1

N

∑

b∈Neb(a)

1

mIb − 1
· paIb→bIb

⎞

⎠ ua + 1

N

∑

b∈Neb(a)

1

mIb − 1
· pbIb→aIb

· ub

(40)

= ua + 1

N

∑

b∈Neb(a)

⎛

⎝
∏

k �=Ib

τk,ak

⎞

⎠
(
pbIb→aIb

· τIb,aIb
− paIb→bIb

· τIb,bIb

)
·
(

1

mIb − 1

)

.

(41)

For an additive game, the expressions for pbIb→aIb
and paIb→bIb

can be simply written as

pbIb→aIb
= 1

1 + eβ fIb (bIb ,aIb )
(42)

paIb→bIb
= 1

1 + eβ fIb (aIb ,bIb )
. (43)

Using the above expressions and the expression for τ in Eq. (35), it can be shown that:

(
pbIb→aIb

· τIb,aIb
− paIb→bIb

· τIb,bIb

)
= 0. (44)

After plugging the equality in Eq. (44) into Eq. (41), we see that the left-hand side of Eq. (36)
simplifies to ua. Now, to complete the proof wemust check if Eq. (37) holds for our candidate
distribution. Summing up the elements of the stationary distribution ua for all states a ∈ A:

∑

a∈A
ua =

∑

a∈A

N∏

k=1

τk,ak =
∑

a∈A

N∏

k=1

eβπk (ak ,q−k )

N∏

k=1

∑

a′∈Ak

eβπk (a′,q−k )

(45)
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where q−1,q−2, ...,q−N are any arbitrary tuples fromA−1,A−2, ...,A−N , respectively. The
denominator in the above expression can be taken out completely from the first sum. That is,

∑

a∈A
ua =

∑

a∈A

N∏

k=1

eβπk (ak ,q−k )

N∏

k=1

∑

a′∈Ak

eβπk (a′,q−k )

(46)

=
(

N∏

k=1

(
eβπk (ak,1,q−k ) + · · · + eβπk (ak,mk ,q−k )

)
)−1

·
(

∑

a∈A

N∏

k=1

eβπk (ak ,q−k )

)

(47)

Multiplying out the sums in the denominator of the above expression, we get

∑

a∈A
ua =

(
N∏

k=1

(
eβπk (ak,1,q−k ) + · · · + eβπk (ak,mk ,q−k )

)
)−1

·
(

∑

a∈A

N∏

k=1

eβπk (ak ,q−k )

)

(48)

=
(

∑

a∈A

N∏

k=1

eβπk (ak ,q−k )

)−1 (
∑

a∈A

N∏

k=1

eβπk (ak ,q−k )

)

= 1. (49)

The step from Eq. (48) to Eq. (49) involves multiplying out all the sums of exponents (where
each term in the sum of exponents corresponds to payoff that player k receives by playing
their actions against co-player composition, q−k). Therefore, the stationary distribution sums
up to 1. The candidate distribution we propose for the additive game is the unique stationary
distribution of the process. �

Proof of Proposition 2 Just like the previous proof, p−1,p−2, ...,p−N are any arbitrary tuples
fromA−1,A−2, ...,A−N , respectively. In the steps below, we always decompose the expres-
sion f j (a, b) to π j (a,p− j ) − π j (b,p− j ). When u = (ua)a∈A is the unique stationary
distribution of the N−player additive game under finite selection introspection dynamics, it
is given by the closed form expression in Eq. (10). We use this expression to calculate the
marginal distribution of actions played at a particular state a, (ξ j,a j ) j∈{1,2,...,N }.

ξ j,a j =
∑

q∈A− j

u(a j ,q) (50)

=
∑

q∈A− j

⎛

⎝
∑

a′∈A j

eβ f j (a′,a j )

⎞

⎠

−1
∏

k �= j

⎛

⎝
∑

a′∈Ak

eβ fk (a′,qk )

⎞

⎠

−1

(51)

=
⎛

⎝
N∏

k=1

∑

a′∈Ak

eβπk (a′,p−k )

⎞

⎠

−1

· eβπ j (a j ,p− j ) ·
⎛

⎝
∑

q∈A− j

∏

k �= j

eβπk (qk ,p−k )

⎞

⎠ (52)

=
⎛

⎝
∑

a′∈A j

eβπ j (a′,p− j )

⎞

⎠

−1

· eβπ j (a j ,p− j ) ·
⎛

⎝
∏

k �= j

∑

a′∈Ak

eβπk (a′,p−k )

⎞

⎠

−1

·
⎛

⎝
∑

q∈A− j

∏

k �= j

eβπk (qk ,p−k )

⎞

⎠

(53)
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=
⎛

⎝
∑

a′∈A j

eβπ j (a′,p− j )

⎞

⎠

−1

· eβπ j (a j ,p− j ) ·
⎛

⎝
∑

q∈A− j

∏

k �= j

eβπk (qk ,p−k )

⎞

⎠

−1

·
⎛

⎝
∑

q∈A− j

∏

k �= j

eβπk (qk ,p−k )

⎞

⎠ .

(54)

The interchange of the sum and the product between the expressions in Eqs. (53) and (54) can
be carried out by observing that when all the sums are multiplied out, one is left with sums
of terms, each of which is a exponential with power equal to sum of payoffs that co-players
of j (here k) receive when they play their respective strategies from q (that is qk) against
co-players that play p−k . This is similar to the step between Eqs. (48) and (49) in the proof
of Proposition 2. Thus,

ξ j,a j =
⎛

⎝
∑

a′∈A j

eβ(π j (a′,p− j )−π j (a j ,p− j ))

⎞

⎠

−1

(55)

=
⎛

⎝
∑

a′∈A j

eβ f j (a′,a j )

⎞

⎠

−1

. (56)

Using the expression in Eq. (56), we can confirm that for additive games, the product of the
marginals is the stationary distribution, �

N∏

j=1

ξ j,a j = ua. (57)

Proof of Proposition 3 Since we have demonstrated that the linear public goods game is an
additive game, the proof of this theorem can be performed by directly using Proposition 1.
Here, we provide an independent proof. The idea behind this proof is identical to the proof
of Proposition 1.

Again, since β is finite, the process will have a unique stationary distribution. Before
continuing with the rest of the proof where we show that our candidate stationary distribution
is the unique stationary distribution, we define the following short-cut notations for the ease
of the proof:

ā j := {D,C} \ {a j } (58)

p j := 1

1 + eβ f j (D,C)
. (59)

In addition, we introduce an indicator function α(.) which maps the action C to 1 and the
action D to 0. That is α(C) := 1 and α(D) := 0. Using these notations and Eqs. (1) and (14)
and utilizing our shortcut notation from above, we can write the probability that a player j
updates to a j from ā j while their co-players play a− j as

pā j → a j
(a− j ) = p j sign(a j ) + α(ā j ). (60)

The candidate stationary distribution u given in Eq. (15) can be written down using our
short-cut notation as

ua =
N∏

k=1

pksign(ak) + α(āk). (61)
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This stationary distribution must satisfy the following properties, which are also given in
Eqs. (5) and (6):

ua = Ta,aua +
∑

b�=a

Tb,aub (62)

∑

a∈A
ua = 1, (63)

where the terms in the right-hand side of Eq. (62) can be simplified using Eqs. (1) and (4) as
follows:

Ta,a = 1 −
N∑

k=1

T(ak ,a−k ),(āk ,a−k ) = 1 − 1

N

N∑

k=1

pksign(āk) + α(ak) (64)

and additionally, using Eq. (61) the second term can be simplified to

∑

b�=a

Tb,aub =
N∑

k=1

T(āk ,a−k ),(ak ,a−k )u(āk ,a−k ) (65)

= 1

N

N∑

k=1

(pksign(ak) + α(āk)) u(āk ,a−k ) (66)

= ua
N

N∑

k=1

pksign(āk) + α(ak). (67)

Now, using Eqs. (64) and (67) one can show that the right-hand side of Eq. (62) is the element
of the stationary distribution, corresponding to the state a, ua . Now, to complete the proof,
we must show that Eq. (63) is also true for our candidate stationary distribution. This can be
done by decomposing the sum of the elements of the stationary distribution as follows

∑

a∈A
ua =

∑

a∈A

N∏

k=1

pksign(ak) + α(āk) (68)

=
∑

a∈A−N
(1 − pN )

N−1∏

k=1

pksign(ak) + α(āk) + pN

N−1∏

k=1

pksign(ak) + α(āk) (69)

=
∑

a∈A−N

N−1∏

k=1

pksign(ak) + α(āk). (70)

When the above decomposition is performed N − 1 more times, the sum of the right-hand
side becomes 1. This proves that the candidate stationary distribution is also a probability
distribution. �
Proof of Proposition 4 By construction, the candidate stationary distribution given by Eqs.
(19) and (20) is a probability distribution since it satisfies the condition in Eq. (6) and for
any state a, ua is between 0 and 1. Again, since β is finite the process will have a unique
stationary distribution. Again, to show that the candidate stationary distribution is the unique
stationary distribution, we need to check if Eq. (5) holds. That is, the condition in Eq. (62)
must hold for all states a. We re-introduce some notations that we will use in this proof:

ā j := {D,C} \ {a j } (71)
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α(a) :=
{
1 if a = C

0 if a = D
(72)

C(a) =
N∑

j=1

α(a j ). (73)

For this process, since there are only two actions, the first term in the right-hand side of Eq.
(62) can be simplified as

uaTa,a = ua − ua

N∑

k=1

T(ak ,a−k ),(āk ,a−k ) (74)

= ua − ua
N

N∑

k=1

1

1 + esign(āk )β f (Nk )
. (75)

where the function sign(.) is defined as in Eq. (16) and f ( j) is the difference in payoffs
between playing D and C when there are j co-players playing C. The term Nk represents the
number of co-players of k that play C in state a. That is,

Nk :=
∑

j �=k

α(a j ). (76)

The second term in the right-hand side of Eq. (62) can be simplified as

∑

b�=a

Tb,aub =
N∑

k=1

T(āk ,a−k ),(ak ,a−k )u(āk ,a−k ) (77)

= 1

N�

N∑

k=1

T(āk ,a−k ),(ak ,a−k )

C((āk ,a−k ))∏

j=1

e−β f ( j−1) (78)

= 1

N�

N∑

k=1

T(āk ,a−k ),(ak ,a−k )

⎛

⎝
Nk∏

j=1

e−β f ( j−1)

⎞

⎠ · e−βα(āk ) f (−α(ak )+Nk ). (79)

From Eq. (78) to Eq. (79), we took out one term from the product that is present in our
candidate distribution. This term accounts for the kth players action in the neighboring state
(āk, a−k) of a. For simplicity, we represent T(āk ,a−k ),(ak ,a−k ) with just T in the next steps. We
continue the simplification of Eq. (79) in the next steps by introducing terms that cancel each
other,

∑

b�=a

Tb,aub = 1

N�

N∑

k=1

T ·
⎛

⎝
Nk∏

j=1

e−β f ( j−1)

⎞

⎠ · e
−βα(āk ) f (−α(ak )+Nk )

e−βα(ak ) f (−α(āk )+Nk )
· e−βα(ak ) f (−α(āk )+Nk ).

(80)

The newly introduced term in Eq. (80) can be taken inside the product. Note that this term
is 1 if the kth player plays D in the state a. When this term is taken inside the product
bracket, products of exponent e−β f ( j−1) can be performed for j ranging from 1 to the number
of cooperators in state a, C(a). This product is then the candidate stationary distribution
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probability ua. That is,

∑

b�=a

Tb,aub = 1

N�

N∑

k=1

T ·
⎛

⎝
Nk∏

j=1

e−β f ( j−1) · e−βα(ak ) f (−α(āk )+Nk )

⎞

⎠ · e
−βα(āk ) f (−α(ak )+Nk )

e−βα(ak ) f (−α(āk )+Nk )

(81)

= 1

N

N∑

k=1

T ·
⎛

⎝ 1

�

C(a)∏

j=1

e−β f ( j−1)

⎞

⎠ · e
−βα(āk ) f (−α(ak )+Nk )

e−βα(ak ) f (−α(āk )+Nk )
(82)

= 1

N

N∑

k=1

T(āk ,a−k ),(ak ,a−k ) · ua · e
−βα(āk ) f (−α(ak )+Nk )

e−βα(ak ) f (−α(āk )+Nk )
. (83)

The fraction inside the sum in Eq. (83) can be simplified using the sign(.) function (in 16)
leading to further simplification of Eq. (83):

∑

b�=a

Tb,aub = 1

N

N∑

k=1

T(āk ,a−k ),(ak ,a−k ) · ua · esign(ak )β f (Nk ). (84)

In Eq. (84), we can replace the element of the transition matrix T(āk ,a−k ),(ak ,a−k ) with

T(āk ,a−k ),(ak ,a−k ) = 1

1 + esign(ak )β f (Nk )
. (85)

Using the expression for the transition matrix element from Eq. (85) into Eq. (84) and by
using Eq. (75), we can simplify further:

∑

b�=a

Tb,aub = ua
N

N∑

k=1

1

1 + esign(ak )β f (Nk )
· esign(ak )β f (Nk ) (86)

= ua
N

N∑

k=1

1

1 + esign(āk )β f (Nk )
(87)

= ua − uaTa,a. (88)

The final step in the previous simplification shows that Eq. (62) holds for any a ∈ {C,D}N .
Therefore, the candidate distribution we propose in Eq. (19) is the unique stationary distri-
bution of the symmetric N -player game with two strategies. �
Proof of Corollary 1 To show this result, we count how many states are identical to a state
a ∈ {C,D}N in a symmetric game. When players are symmetric in a two-strategy game,
states can be enumerated by counting the number of C players in that state. This can also
be confirmed by the expression of the stationary distribution in Eq. (19). Two distinct states
a, a′ having the same number of cooperators (i.e., C(a′) = C(a)), have the same stationary
distribution probability (i.e., ua′ = ua).

In a game with N players, there can be k players playing C in exactly
(N
k

)
ways. As argued

before, all of these states are identical and are also equiprobable in the stationary distribution.
Therefore, the stationary distribution probability of having k, C players, uk , is

uk =
∑

C(a)=k

ua = 1

�

(
N

k

) k∏

j=1

e−β f ( j−1). (89)
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where the normalization factor � can also be simplified as

� =
N∑

k=0

(
N

k

) k∏

j=1

e−β f ( j−1). (90)

�
Proof of Proposition 5 We consider two arbitrary states a and b such that a ∈ Neb(b). Let
j = I(a,b) be the index of difference between these neighboring states. Taking into account
thatmi = 2,∀i ∈ {1, 2, ..., N }, it follows that a j and b j are the only two actions in the action
set of player j , A j . It can be shown that,

TID
a,b = 1

N

1

m j − 1
pa j→b j (a− j ) = 1

N
· 1

1 + eβ(π j (a j ,a− j )−π j (b j ,a− j ))
(91)

= 1

N
· eβπ j (b j ,a− j )

eβπ j (b j ,a− j ) + eβπ j (a j ,a− j )
(92)

= 1

N
· eβπ j (b j ,a− j )

∑

a′∈A j

eβπ j (a′,a− j )
(93)

= 1

N
· pLDb j

(a− j ) = TLD
a,b. (94)

The above equality is sufficient to show that TLD = TID (the other cases of the matrix 29 are
trivial). Furthermore, when β is finite, both the processes will also have identical stationary
distributions. That is, uLD = uID. �
Proof of Proposition 6 In this proof, we will use the result from proposition 1 in Alós-Ferrer
and Netzer [2]. There, it was shown that the stationary distribution of the logit-response
dynamics for a potential game with potential φ (for a finite β) takes the form

uLDa = eβφ(a)

∑

a′∈A
eβφ(a′) . (95)

We will use this stationary distribution as the candidate stationary distribution for intro-
spection dynamics and show that uLDTID = uLD. This is sufficient to prove that, with finite
β, uLD = uID. We will look at the value of the following expression for two arbitrary
neighboring states, a and b (with j as the index of difference between the two states),

uLDa TID
a,b − uLDb TID

b,a (96)

= 1

N (m j − 1)
· 1

∑

a′∈A
eβφ(a′) · (eβφ(a) pa j→b j (a− j ) − eβφ(b) pb j→a j (a− j )) (97)

= 1

N (m j − 1)
∑

a′∈A
eβφ(a′) · 1

eβπ j (b) + eβπ j (a)

(

eβφ(a)eβπ j (b) − eβφ(b)eβπ j (a)
)

(98)

= 1

N (m j − 1)
∑

a′∈A
eβφ(a′) · eβσ(a− j )

eβπ j (b) + eβπ j (a)

(

eβφ(a)eβφ(b) − eβφ(b)eβφ(a)
)

(99)
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= 0 (100)

Using the above result, one can then show that,

uLDa TID
a,b − uLDb TID

b,a = 0 (101)

�⇒
∑

c∈Neb(a)
uLDa TID

a,c − uLDc TID
c,a = 0 (102)

�⇒ uLDa

(

1 −
∑

c∈Neb(a)
TID
a,c

)

+
∑

c∈Neb(a)
uLDc TID

c,a = uLDa (103)

�⇒ uLDa TID
a,a +

∑

c∈Neb(a)
uLDc TID

c,a = uLDa (104)

�⇒ uLDTID = uLD (105)

The candidate uLD is indeed the unique stationary distribution of introspection dynamics too.
Therefore, the two processes have the same stationary distribution. �
Proof of Proposition 7 The idea behind the proof of this proposition is similar to the proof of
Proposition 6. We consider the stationary distribution of introspection dynamics for additive
games, uID, from Eq. (10), to be the candidate stationary distribution of the logit-response
dynamics. Then, showing that uIDTLD = uID is equivalent to showing that uLD = uID.
Again, like in the previous proof, we look at the value of the following expression for two
arbitrary neighboring states a and b (with j as the index of difference between the states),

uIDa TLD
a,b − uIDb TLD

b,a (106)

= 1

N
∑

a′∈A j

eβπ j (a′,a− j )

( ∏

l �= j

1
∑

a′′ ∈Al

eβ fl (a
′′
,al )

)

︸ ︷︷ ︸
L>0

(
eβπ j (b j ,a− j )

∑

a∈A j

eβ f j (a,a j )
− eβπ j (a j ,a− j )

∑

a∈A j

eβ f j (a,b j )

)

(107)

The product of the first two terms, which we denote as L is strictly greater than 0. We focus
on the rest of the expression. Since, f j (a, a j ) = π j (a,p) − π j (a j ,p), is independent of p
irrespective of the choice of p ∈ A− j , we use p = a− j in the steps below,

uIDa TLD
a,b − uIDb TLD

b,a (108)

= L · 1
∑

a∈A j

eβπ j (a,a− j )

(

eβπ j (b j ,a− j )eβπ j (a j ,a− j ) − eβπ j (a j ,a− j )eβπ j (b j ,a− j )

)

(109)

= 0 (110)

Now, following the exact same steps fromEq. (101) to Eq. (105), we can show that uIDTLD =
uID. Therefore, the two processes have the same stationary distribution, uID = uLD. �
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