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Evolving cooperation in multichannel games
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Humans routinely engage in many distinct interactions in parallel. Team members collaborate

on several concurrent projects, and even whole nations interact with each other across a

variety of issues, including trade, climate change and security. Yet the existing theory of

direct reciprocity studies isolated repeated games. Such models cannot account for strategic

attempts to use the vested interests in one game as a leverage to enforce cooperation in

another. Here we introduce a general framework of multichannel games. Individuals interact

with each other over multiple channels; each channel is a repeated game. Strategic choices in

one channel can affect decisions in another. With analytical equilibrium calculations for the

donation game and evolutionary simulations for several other games we show that such

linkage facilitates cooperation. Our results suggest that previous studies tend to under-

estimate the human potential for reciprocity. When several interactions occur in parallel,

people often learn to coordinate their behavior across games to maximize cooperation in

each of them.
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Many of our social interactions occur in the context of
repetition, which enables the evolution of cooperation
by direct reciprocity1,2. Once there is a “shadow of the

future”, people are more hesitant to free ride even if there are
strong short run incentives to do so. When individuals interact
more than once, they can adopt conditional strategies that take
into account the co-player’s past behavior3–6. With these condi-
tional strategies, cooperation can be enforced more effectively
than would be possible in one-shot interactions. To describe
direct reciprocity mathematically, researchers use the framework
of iterated games7,8. This framework considers individuals who
repeatedly engage in the same strategic interaction. Over the last
decades, research on repeated games has identified which stra-
tegies can sustain cooperation9–20, which conditions allow these
strategies to spread in a population21–27, and which of these
strategies are used by human subjects28–31.

Much of the existing literature on reciprocity is based on the
assumption that individuals only engage in one repeated game. In
most applications, however, people are regularly involved in
multiple repeated games in parallel. Research teams routinely
work on several concurrent projects32, firms compete in distinct
geographic locations33, and political parties or entire nations need
to collaborate on a whole range of different policy areas. If
individuals treated all their different games as independent, each
game could be analyzed in isolation, and the existing framework
of direct reciprocity would continue to make correct predictions.
In many scenarios, however, individuals have an incentive not to
treat the different games as independent. By conditioning beha-
vior in one game on what happened in another, individuals can
increase their bargaining power34. This added leverage can be
used to force cooperative behaviors even in those games in which
cooperation is particularly difficult to sustain. To capture such
strategic spillovers between distinct interactions, we introduce an
evolutionary framework for multichannel games (Fig. 1).

The previous evolutionary literature has shown that remark-
able dynamical effects can already occur when two or more one-
shot (non-repeated) games are coupled35–38. This literature sug-
gests that people find it more difficult to coordinate on an
equilibrium when they interact in several games simultaneously.
Evolutionary trajectories may yield persistent cycles even if each
individual game has a unique absorbing state. By focusing on
one-shot games, however, these previous studies do not capture
reciprocal exchanges. They cannot explain how individuals
optimally use one interaction to enhance cooperation in another.
An independent strand of literature related to our study is pre-
vious work on multi-market price competition39,40. This work
explores whether firms find it easier to reach collusive agreements
when they are in contact in several distinct markets. The corre-
sponding models suggest that multi-market contact may help, but
only if there is sufficient heterogeneity between firms or mar-
kets39, or if monitoring is imperfect40. Importantly, however,
these models take a static approach. By constructing specific
collusion strategies, they identify conditions under which multi-
market contact alters the possible equilibrium outcomes (see
Supplementary Note 1 for a more detailed description). In con-
trast, we take an evolutionary approach. We are interested in the
strategies that the players themselves adopt over time, when given
the choice between different strategies of similar complexity.

Our evolutionary findings suggest that individuals quickly
learn to coordinate their own behaviors across different social
dilemmas. They tend to use cooperation in more valuable inter-
actions as a means to promote cooperation in those games with a
larger temptation to defect. Remarkably, this endogenous cou-
pling of independent games does not need to come at the cost of
reduced cooperation in the most valuable game. Instead, indivi-
duals often evolve to be more cooperative in all games, including

those in which subjects are highly cooperative even without any
linkage. To explore this effect in more detail, we explore which
strategies can be used to sustain full cooperation in all concurrent
games. When each game is a donation game, we provide a
complete characterization of these “partner” strategies. Based on
these analytical results, we show that the set of partner strategies
expands considerably once individuals are allowed to link their
different games. Our findings suggest that linkage enhances the
influence and flexibility individuals have. This enhanced flex-
ibility is crucial to establish cooperation in some games, and it can
further promote the already existing cooperative behaviors in
others.

Results
An evolutionary framework for multichannel games. In the
main text, we introduce our framework for the most simple set-
ting, by considering two players who simultaneously interact in
two games, as depicted in Fig. 1a (further generalizations are
discussed in the Supplementary Note 2). For each game, players
independently decide whether they cooperate (C) or defect
(D). Payoffs take the form of a so-called donation game7. That
is, a player who cooperates in game k transfers a benefit bk to the
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Fig. 1 Cooperation in multichannel games. a In a multichannel game,
individuals repeatedly interact in several independent games. Here, we
illustrate the case of two players who interact in two different prisoner’s
dilemma games. In each game, players can either cooperate (C) or defect
(D). A player’s payoff in each game k is either Rk, Sk, Tk, or Pk, depending on
the player’s and the co-player’s decision. In the main text, we consider the
case that the two games take the form of a donation game7, such that Rk=
bk− ck, Sk=−c, Tk= bk, and Pk= 0, where bk and ck are the benefit and cost
of cooperation. The effect of other payoffs is studied in the Supplementary
Information. Players interact for infinitely many rounds. In each round,
players simultaneously determine how to act in each game. We distinguish
two different scenarios. b In the unlinked case, the two players are
restricted to treat each game as independent. They only react to the co-
player’s previous action in the very same game. c In the linked case, the two
players are able to couple the two games—they are allowed to react to a
co-player’s defection in one game by defecting in the other. In the above
example, the first player defects in the first game in the second round (as
indicated by the white D in the respective blue box). In response, the
second player defects in both games in the third round.
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co-player at own cost ck. Defectors pay no cost and create no
benefit. We assume bk > ck > 0, such that each game has the
incentive structure of a prisoner’s dilemma. It follows that
cooperation does not evolve in either game if players only interact
once35. However, here we consider repeated interactions. After
each round, there is another one in which players again have to
decide whether to cooperate in either game. We refer to such
repeated interactions across multiple parallel games as a multi-
channel game. A player’s payoff in the multichannel game is
computed by summing up her average payoffs across all indivi-
dual games.

To explore the effect of endogenous linkage, we distinguish
between two versions of multichannel games. In the unlinked case
(Fig. 1b), individuals consider each game in isolation. To decide
whether to cooperate in game k, they only take into account what
previously happened in that very game, while ignoring what
happened in the other. Such a scenario may reflect, for example,
two companies who compete in two different geographic markets,
each managed by independent subunits. In contrast, in the linked
case (Fig. 1c), players are able to react in each game to what
previously happened in all games. In particular, players have
multiple opportunities to retaliate against a co-player who
defected in one of the games. They may either respond by
defecting in the same game, in the other, or in both.

Because players may condition their behavior on the entire
previous history of play, strategies for multichannel games can be
arbitrarily complex. To make a computational analysis of the
evolutionary dynamics feasible, we assume that players choose
from a predetermined set of given complexity. Here, we first
consider reactive strategies7. A player’s behavior in any given
round may thus depend on the co-player’s action in the last
round, but it is independent of all previous rounds. In the
unlinked case, reactive strategies can be represented by 4-tuples

p ¼ ðp1C; p
1
D; p

2
C; p

2
DÞ: ð1Þ

Here, pka is a player’s probability to cooperate in game k,
dependent on the co-player’s previous action a ϵ {C, D} in that
game. In the linked case, reactive strategies take the form

p ¼ ðp1CC; p
1
CD; p

1
DC; p

1
DD; p

2
CC; p

2
CD; p

2
DC; p

2
DDÞ: ð2Þ

Now, pka1a2 is the probability to cooperate in game k depending on
the co-player’s previous actions in game one and two,
respectively. In the linked case, players themselves may decide
to treat each game as independent, by choosing a strategy for
which

p1CC ¼ p1CD; p1DC ¼ p1DD; p2CC ¼ p2DC; p2CD ¼ p2DD: ð3Þ

It follows that the set of linked strategies (2) contains the unlinked
strategies (1) as a (strict) subset. In the following, we explore the
effect of linkage in two ways. (i) We compare the evolving
cooperation rates between the linked and unlinked case; and (ii)
we analyze to which extent players in the linked case use
strategies that are infeasible in the unlinked case.

To describe how players adapt their strategies over time, we
consider a pairwise comparison process41,42. Evolution occurs in
a population of fixed size N. Players receive payoffs by interacting
with all other population members. Occasionally, they are given a
chance to update their strategies. With probability μ (reflecting a
mutation probability), players do so by random strategy
exploration. In that case, they choose a new strategy uniformly
at random from the set of all available strategies. Otherwise, with
probability 1− μ, players consider imitating the strategy of
someone else. To this end, they randomly sample a role model
from the population. Then they adopt the role model’s strategy
with a probability that increases in the role model’s payoff (for

details, see “Methods”). Over time, the two elements of imitation
and random strategy exploration yield a stochastic process on the
space of all possible population compositions. We explore this
process through computer simulations in the limit of rare
mutations43–46 (the respective code is provided in Supplementary
Note 5).

The effect of linkage in concurrent prisoner’s dilemma games.
To explore evolution in multichannel games, we have first run
simulations for a scenario in which the first game has a higher
benefit of cooperation, such that b1 > b2. When the two games are
unlinked (Fig. 2a), individuals quickly tend to cooperate in the
first game (74.1%) but less so in the second (37.5%). Instead,
when the two games are linked (Fig. 2b), cooperation in the
second game increases considerably (to 64.4%), but also the
cooperation rates in the first game show a moderate increase (to
87.2%). To explore these effects in more detail, we have recorded
which behaviors the players exhibit by the end of each simulation.
We distinguish four classes, depending on whether individuals
tend to cooperate in both games, cooperate in one game but
defect in the other, or defect in both (Fig. 2c, d). In the unlinked
case, the most abundant behavior is to cooperate in the more
valuable game and to defect in the other. Only if the two games
are linked, most players coordinate on mutual cooperation in
both games.

To understand how linkage facilitates the evolution of mutual
cooperation, we have recorded which strategies the players use. In
the unlinked case, cooperating players use strategies resembling
Generous Tit-for-Tat3,4 (Fig. 2e). They fully reciprocate a co-
player’s cooperation in the respective game, but they still
cooperate with some positive probability if the co-player defects.
In the linked case, the evolving strategies are similar, with one
crucial exception. If the co-player cooperated in one game but not
in the other, individuals react with a reduced cooperation
probability in both games, independent of where the transgres-
sion occurred (Fig. 2f). We refer to such strategies as Linked Tit-
for-Tat (LTFT). Individuals who adopt LTFT have learned to
connect the two games. Their actions in either game depend on
what happened in the other.

Characterization of partners, semi-partners, and defectors. To
explore the emergence of linkage in more detail, we have math-
ematically characterized the strategy classes that give rise to the
four possible behaviors described above. We say a strategy is a
partner if two individuals with that strategy cooperate in both
games and if the respective strategy is a Nash equilibrium (such
that no player has an incentive to deviate). Similarly, we say a
strategy is a game-k semi partner if it gives rise to a Nash equi-
librium where the two players cooperate in game k but defect in
the other. Finally, a strategy is a defector if it gives rise to a Nash
equilibrium with mutual defection in both games. For repeated
games, the respective strategy classes of partners and defectors
have been characterized recently13–17. Here we describe them for
multichannel games. We recover the previous work as a special
case (see Supplementary Note 3 for details). In the unlinked
case, we find that a reactive strategy is a partner only if for both
games k,

pkC ¼ 1

pkD ≤ 1 $ ck
bk

:
ð4Þ

Supplementary Fig. 1 gives a graphical illustration. The first
condition ensures that players are mutually cooperative, while the
second condition guarantees that no other strategy can invade
(not even strategies of higher complexity). In the linked case, we
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find that a partner strategy needs to satisfy

p1CC ¼ p2CC ¼ 1
b1

b1 þ b2
& p1DC þ b2

b1 þ b2
& p2DC ≤ 1 $ c1

b1 þ b2
b1

b1 þ b2
& p1CD þ b2

b1 þ b2
& p2CD ≤ 1 $ c2

b1 þ b2
b1

b1 þ b2
& p1DD þ b2

b1 þ b2
& p2DD ≤ 1 $ c1 þ c2

b1 þ b2

ð5Þ

These conditions are visualized in Supplementary Fig. 2. By
comparing (4) with (5), we can explore why linkage facilitates the
evolution of mutual cooperation. In the unlinked case, every
single cooperation probability pkD needs to fall below a certain
threshold. In particular, in neither game are the players allowed to
be more generous than prescribed by the conventional Generous
Tit-for-Tat strategy3,4. In contrast, in the linked case the
respective thresholds only need to be met on average, when
taking a weighted mean across both games. Players can afford to
be more forgiving in one game by being more restrictive in the
other. The specific weights depend on how valuable cooperation
is in the respective game. The more valuable, the less forgiving a
player should be after a co-player’s defection.

Conditions (4) and (5) can also be used to calculate how likely
it is that a randomly chosen cooperative strategy is a partner (see
Supplementary Note 3 for details). This calculation confirms that
random strategy exploration is more likely to generate partner
strategies when the two games are linked (Supplementary Fig. 3a).
Linkage is particularly advantageous when the two games differ in
their benefit (Supplementary Fig. 3b). In that case, partner
strategies are rare in the unlinked case where cooperation in the
low-benefit game is difficult to sustain. In the linked case, on the
other hand, players only need to slightly adapt their cooperation
probabilities in the high-benefit game to also sustain cooperation

in the other. For semi-partners and defectors, linkage has the
opposite effect. These strategies tend to become less abundant
when the games are linked (Supplementary Fig. 3c–h and
Supplementary Note 3 for details).

Partners, semi-partners, and defectors in evolution. In a next
step, we have investigated to which extent the four strategy classes
described above can explain the simulation results in Fig. 2. To
this end, we have run further simulations in which we record how
often evolving populations learn to adopt strategies in the
neighborhood of each strategy class (for details, see Supplemen-
tary Note 3). In the absence of any selection pressure, the four
classes only amount to a negligible fraction of all observed
behaviors (Fig. 3a, d). But once evolution is determined by a
strategy’s relative success, the four strategy classes account for
72% of the observed behaviors in the unlinked case (Fig. 3b) and
for more than 95% in the linked case (Fig. 3e). In the unlinked
case, we mainly observe three behaviors: partners who cooperate
in both games, semi-partners who only cooperate in the more
profitable first game, and other (unclassified) strategies. In the
linked case, partners predominate.

This analysis also shows how resistant strategies from different
strategy classes are to mutant invasions (Fig. 3c, f). In the
unlinked case, it takes ~1000 attempts by randomly generated
mutant strategies to invade a resident partner or game-1 semi-
partner strategy. Once the two games are linked, all named
strategy classes become more resistant, but partners particularly
so. Now, it takes on average more than 18,000 mutants until a
resident partner is invaded, and successful mutants are more
likely to be partners again. To further corroborate these findings,
we have systematically varied the benefit of cooperation in the
first game (Supplementary Figs. 4 and 5). Throughout we find
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Fig. 2 The evolutionary advantage of linkage. a, b We simulated the dynamics when players simultaneously engage in a game with a high benefit of
cooperation (Game 1, blue) and a game with a comparably low benefit (Game 2, red). We find that linking has a strongly positive effect in the low-benefit
game and a weakly positive effect in the high-benefit game. c, d We recorded which behaviors the players exhibit by the end of each simulation. To this
end, we define a strategy to be cooperative in a given game if the respective cooperation rate against itself is at least 80%. Similarly, we say a strategy is
non-cooperative, if this cooperation rate is below 20%. This distinction gives rise to four behavioral classes, depending on whether players are cooperative
in both games, cooperative in one game but non-cooperative in the other, or non-cooperative in both. Only when the two games are linked, players are
most likely to be fully cooperative in both. e, f We analyze which strategies the players use when they are fully cooperative. Each bar shows the respective
mean value, whereas dots represent 100 randomly sampled realizations of the simulation. In the linked case, players only exhibit a high mean cooperation
probability (in either game) if their co-player previously cooperated in both games. As parameters we used b1= 5, b2= 3, and c1= c2= 1, in a population of
size N= 50 using a selection strength parameter s= 2. The figure shows averages over 1000 simulations of the pairwise comparison process41,42 in the
limit of rare mutations (see “Methods” for details).
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that linkage leads to more cooperation in both games, driven by a
higher abundance of partner strategies. Our results are indepen-
dent of the considered evolutionary parameters, such as
population size, selection strength, frequency of mutations, or
error rate (Supplementary Fig. 6).

Evolution among memory-1 players. After exploring the effects
of linkage among reactive players, we have run simulations for
memory-1 strategies (Fig. 4 and Supplementary Fig. 7). In addi-
tion to the co-player’s actions in the last round, a memory-1
player also takes her own actions into account. Previous research
suggests that with memory-1 strategies, players should learn to
adopt Win-Stay Lose-Shift (WSLS). In each individual game they
should repeat their previous action if it yielded a positive payoff,
and they should switch to the opposite action otherwise. While
our simulations generate WSLS strategies in the unlinked case,

players in the linked case rather adopt a rule we term Cooperate if
Coordinated (CIC). A player with this strategy cooperates in all
games if the players’ previous actions in each game coincided. In
Supplementary Note 4, we prove that CIC can establish full
cooperation under conditions where WSLS fails. Moreover, we
show that CIC is most valuable when there is considerable het-
erogeneity among the games individuals play.

Discussion
Herein, we have introduced a general framework to explore the
evolution of reciprocity when people interact in multiple games
simultaneously. Such multichannel games are different from
usual repeated games because they allow players to engage in
cross-reciprocity. If a player defects in one game, the co-player
may respond by defecting in the same game, a different game, or
in all games currently played. Previous work suggests that these
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Fig. 3 Linked games favor partner strategies. To understand how linking promotes cooperation, we distinguish between different strategy classes,
representing different kinds of Nash equilibria. Partners mutually cooperate in both games; Game-k semi-partners cooperate in game k but defect in the
other; and Defectors defect in both games. Each strategy class can be characterized analytically. In addition, we consider the class of “others”, which
includes all remaining strategies. a, d Partners, semi-partners, and defectors only make up a minor fraction of the entire strategy space. b, e However, when
strategies result from an evolutionary process that favors strategies with high payoffs, these strategies account for >72% (unlinked) and for >95%
(linked) of the observed behaviors. c, f For each resident strategy that emerged during the simulation, we classified its type, recorded the time t (number of
mutants) until invasion, and classified the successful mutant. In the unlinked case, partners and game-1 semi-partners are most robust to invasion. In
addition, other strategies are frequently played despite their poor robustness. In the linked case, partners are clearly favored. The figure is based on the
same parameters as in Fig. 2, but simulations are run for longer (during each simulation, we consecutively introduce 2 × 107 mutants; the figure shows data
from eight independent simulations). Because the first four strategy classes have measure zero, we have recorded how often players are in a small
neighborhood of the respective strategy class (see Supplementary Note 3).
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added retaliation opportunities do not necessarily enhance
cooperation39. After all, when multiple social dilemmas occur in
parallel, this does not only increase the opportunities to retaliate,
but also the opportunities to defect in the first place. As a result,
merely interacting across several copies of the same social
dilemma does not alter the possible equilibrium outcomes39.

Using an evolutionary approach, we nevertheless find that
multichannel games facilitate cooperation. Even in those cases in
which linkage leaves the set of equilibrium outcomes unchanged,
it may still affect the number of strategies that give rise to each
equilibrium outcome. To illustrate this point, we have considered
a multichannel game in which individuals simultaneously interact
in multiple social dilemmas. Once players are able to link these
games, the set of partner strategies that enforce full cooperation
increases substantially (even if all games coincide). As a con-
sequence, players are more likely to discover and adopt these
partner strategies over the course of evolution.

Throughout the main text, we have focused on simple
instances of multichannel games. We have considered two players
who use reactive or memory-1 strategies to interact across two
donation games. However, our framework is in no way restricted
to these cases. In the “Methods”, we describe how our model can
be adapted to cover interactions across arbitrarily many donation
games. The respective characterizations of partners, semi-partners
and defector strategies immediately carry over, and also the
evolutionary dynamics is similar (see Supplementary Fig. 8 and
Supplementary Note 3).

In addition, we have also explored the dynamics of social
dilemmas in which mutual cooperation is no longer the uniquely
optimal outcome47, including the snowdrift game48,49 and the
volunteer’s dilemma50 (Supplementary Figs. 9 and 10). Again, we
observe higher payoffs when players are able to link two

independent instances of these game classes. However, the play-
ers’ payoffs may no longer approach the social optimum even for
substantial benefits of cooperation. Finally, we have also explored
cases in which at least one of the concurrently played games takes
the form of a coordination game. Coordination games allow for
full cooperation even without linkage, and in fact without any
repeated interactions. Taking the so-called sculling game51 as an
example, we show that in such cases, linkage can be detrimental.
Especially if cooperation is risk-dominant, high cooperation rates
can already be achieved in the unlinked case. Here, linking leads
to a slight decrease in cooperation rates (Supplementary Figs. 9
and 10). We conclude that strategic linkage is most effective in
strict social dilemmas, in which repeated interactions are key to
sustain cooperation.

Although groups of individuals often engage in several inter-
actions in parallel, traditional models tend to explore each of
these interactions as an isolated game. Our work suggests that
such models may underestimate the human potential for coop-
eration. Once individuals are allowed to link their concurrently
ongoing interactions, they often learn to coordinate their beha-
vior across games in order to enhance cooperation in each
of them.

Methods
Multichannel games. We provide a full account of the applied methods and the
proofs of our mathematical results in the Supplementary Information. Here we
provide a summary of the considered setup and the respective findings.

In a multichannel game, a group of individuals repeatedly interacts in several
independent (elementary) games, as depicted in Fig. 1. Here, we discuss the special
case that the group consists of two individuals who interact in m games, where each
game takes the form of a social dilemma. In the main text we describe our results
for m= 2 games. Generalizations are presented in the Supplementary Information.

In each round, players decide whether to cooperate (C) or to defect (D) for each
of the m games. Games are independent in the sense that a player’s one-round

0 30,000 60,000
0.0

0.5

1.0

C
oo

pe
ra

tio
n 

ra
te

U
nl

in
ke

d
Game 1

Game 2

86.5%

18.1%

0 30,000 60,000
0.0

0.5

1.0

Time

C
oo

pe
ra

tio
n 

ra
te

Li
nk

ed

Game 1

Game 2

89.6%
78.2%

0.5

1.0 Game 1

0.5

1.0

C
oo

pe
ra

tio
n 

pr
ob

ab
ili

ty

Game 2

0.5

1.0 Game 1

0.5

1.0

C
oo

pe
ra

tio
n 

pr
ob

ab
ili

ty
C
C

C
C

C
C

C
D

C
C

D
C

C
C

D
D

C
D

C
C

C
D

C
D

C
D

D
C

C
D

D
D

D
C

C
C

D
C

C
D

D
C

D
C

D
C

D
D

D
D

C
C

D
D

C
D

D
D

D
C

D
D

D
D

F
oc

al
ga

m
e

O
th

er
ga

m
e

Focal player
Other player

Focal player
Other player

Game 2

Evolutionary dynamics Average strategya

b

c

d

Fig. 4 Multichannel games among memory-1 players. a, b The positive effects of linkage are even stronger when players are able to choose among all
memory-1 strategies. c In the unlinked case, players tend to use different strategies for the two games for the respective parameter values. In the first
game, their strategy resembles Win-Stay Lose-Shift5. They are most likely to cooperate if either both players cooperated in the previous round, or both
players defected. In the second game, the average strategy resembles Grim7. Here, a player cooperates only if both players did so in the previous round.
d In contrast, in the linked case, players use similar strategies for both games. Players are most likely to cooperate if in each previous game they used the
same action (either CC or DD; the action played may be different in different games). We call the respective strategy Cooperate if Coordinated (CIC). As
parameters we used b1= 4, b2= 2, and c1= c2= 1, N= 50, and s= 1. Players can choose among all deterministic memory-1 strategies, for which the
conditional cooperation probability is either zero or one. The strategies are subject to errors, using an error rate ε= 0.01. The figure shows averages over
500 independent simulations.
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payoff in each game only depends on the player’s and the co-player’s action in that
game, irrespective of the outcome of the other games. For each game k, we denote
the possible one-round payoffs by Rk, Sk, Tk, and Pk. Here, Rk is the reward when
both players cooperate, Sk is the sucker’s payoff a cooperator obtains when the co-
player defects, Tk is the temptation to defect when the co-player cooperates, and Pk
is the punishment payoff for mutual defection. For the game to be a social
dilemma52,53, we assume that Rk > Pk (such that mutual cooperation is favored to
mutual defection), and that either Tk > Rk or Pk > Sk. The prisoner’s dilemma
corresponds to the case where all three inequalities are satisfied. Throughout the
main text, we focus on a special case of the prisoner’s dilemma, called donation
game7. In the donation game, cooperation means to pay a cost ck > 0 to transfer a
benefit bk > ck to the co-player. It follows that Rk = bk− ck, Sk=−ck, Tk= bk, and
Pk= 0. However, the general framework is able to capture arbitrary kinds of social
dilemmas (Supplementary Figs. 9 and 10).

The players’ decisions in each round depend on the previous history of play and
on the players’ strategies. To quantify the effects of strategic spillovers between
different games, we distinguish two versions of multichannel games. The unlinked
case (Fig. 1b) serves as a control scenario. Here, any spillovers are excluded. Each
player’s action in game k may only depend on the previous history of game k. In
contrast, in the linked case (Fig. 1c), a player’s action in game k may depend on the
outcome of other games as well.

To make a computational analysis feasible, we suppose players are restricted to
strategies of some given complexity. Throughout most of the main text, we assume
players use reactive strategies. That is, their actions in any given round may depend
on their co-player’s actions in the previous round, but they are independent of all
other aspects. In the unlinked case, we define reactive strategies as the elements of
the set

RU ¼ p ¼ ðp1a1 ; p
2
a2
; ¼ ; pmam Þak2fC;Dg;k2f1;¼ ;mg

pkak 2 ½0; 1( for all k
!!!

n o
:

ð6Þ

Here, pkak is the player’s cooperation probability in game k, which depends on
which action ak ϵ {C, D} the co-player has chosen in the previous round of that
game. For m= 2, the elements of RU take the form of the four-dimensional vector
represented in Eq. (1). In the linked case, reactive strategies are the elements of the
set

RL ¼ p ¼ ðpkaÞa2fC;Dgm ;k2f1;¼ ;mg pka 2 ½0; 1( for all k and a
!!

n o
: ð7Þ

Here, pka is again the player’s conditional cooperation probability in game k.
However, this time, this probability depends on the co-player’s last actions in all m
games, represented by the vector a= (a1, …, am) ϵ {C, D}m. For m= 2, reactive
strategies take the form of eight-dimensional vectors, as represented in Eq. (2). For
the simulations, we assume that players can choose any strategy in either RU (in
the unlinked case) or RL (in the linked case).

In addition to reactive strategies, we have also run simulations in which players
can choose among all memory-1 strategies (Fig. 4 and Supplementary Fig. 7). Here
the players’ actions depend on their co-player’s previous decisions and on their
own previous decisions. We formally define the respective strategy spaces for the
unlinked and the linked case in Supplementary Note 4. As with reactive strategies,
simulations suggest that when players are able to link their games, they achieve
more cooperation in both games (Fig. 4 and Supplementary Fig. 7).

We consider infinitely many rounds in the limit of no discounting. For each
game k, we define the associated repeated-game payoff as the limit of the player’s
average payoff per round (for the cases we consider, the existence of this limit is
guaranteed). A player’s payoff in the multichannel game is defined as the sum over
all her m repeated-game payoffs.

We may sometimes assume that a player misimplements her intended action.
Specifically, with probability ε, a player who intends to cooperate instead defects,
and conversely a player who intends to defect cooperates. In addition to making the
model more realistic, implementation errors ensure that payoffs are well-defined,
independent of the outcome of the very first round of the game7,23. Our simulation
results are robust with respect to the exact magnitude of this error rate, provided
that errors are sufficiently rare for the player’s strategies to have an impact
(Supplementary Fig. 6d). For further details, see Supplementary Note 2.

Evolutionary dynamics. To model the evolution of strategies over time, we con-
sider a pairwise comparison process41,42 in a population of size N. Each player
interacts with every other population member in the respective multichannel game.
A player’s payoff in the population game is defined as her average payoff across all
multichannel games she participates in.

To consider the most stringent case for the evolution of cooperation, initially
each player adopts the strategy ALLD. That is, for any outcome of the previous
round, each player’s conditional cooperation probability is zero. Then, in each time
step of the simulation, one population member is chosen at random to update her
strategy. There are two different updating methods. With probability μ (referred to
as mutation rate), the chosen player engages in random strategy exploration. In
that case, the player randomly picks a new strategy from the set of all available
strategies (for reactive strategies, this set is RU in the unlinked case, and it is RL in

the linked case; for memory-1 strategies the respective sets are defined
analogously).

Alternatively, with probability 1− μ, the chosen player picks a random role
model from the population. If the focal player’s payoff is πF and the role model’s
payoff is πR, the focal player adopts the role model’s strategy with probability54

ρ ¼ 1
1þ exp½$sðπR $ πFÞ(

: ð8Þ

The parameter s ≥ 0 is called the strength of selection55. It reflects to which extent
the focal player aims to achieve higher payoffs when updating her strategy. If s= 0,
payoffs are irrelevant and imitation occurs at random. In the other limit when
s → ∞, a player always updates when considering a role model with higher payoff.

Over time, the interaction of random strategy exploration and imitation yields
an ergodic process on the space of all possible population compositions. For our
simulations, we implement this process in the limit of rare mutations, μ→ 0, which
allows for an easier computation of the dynamics43–46. The respective code is
provided in Supplementary Note 5. As illustrated in Supplementary Fig. 6c, we
obtain similar results for larger mutation rates, provided mutations are not too
common compared to imitation events.

Analytical results for reactive strategies. To complement our numerical
simulations, we have mathematically characterized three different classes of Nash
equilibria when each game k is a donation game. A strategy p is a Nash equilibrium
if no player has an incentive to deviate if every other player adopts p. We note that
deviations need to be interpreted broadly: for a strategy to be a Nash equilibrium,
no other strategy is allowed to yield a higher payoff, not even a strategy of higher
complexity as strategy p. We call a strategy self-cooperative in game k if its
cooperation rate against itself in game k approaches one in the limit of no errors.
Similarly, the strategy is self-defective in game k, if the respective cooperation rate
approaches zero. Based on these notions, we define partners, semi-partners, and
defectors as follows. A strategy is a partner if it is a Nash equilibrium and if it is
self-cooperative in all games k. Similarly, a strategy is a defector if it is a Nash
equilibrium and if it is self-defective in every game. Finally, the strategy is a game k
semi-partner, if it is a Nash equilibrium and if it is self-cooperative in game k but
self-defective in all other games.

Within the space of reactive strategies, we can characterize the partners, semi-
partners, and defectors in the linked case as follows. To simplify notation, we
introduce an indicator variable eka . Its value is one if the k-th entry of the co-player’s
action profile a= (a1, …, am) is C and it is zero otherwise. Using this notation, we
obtain (for details, see Supplementary Note 3, Propositions 1–3):

1. A strategy p 2 RL that is self-cooperative in each game k is a partner if and
only if

Pm
k ¼ 1 bk & ð1 $ pkaÞ≥

Pm
k ¼ 1 ck & ð1 $ ekaÞ for all co-player’s

action profiles a ϵ {C, D}m.
2. A strategy p 2 RL that is self-defective in each game k is a defector if and

only if
Pm

k ¼ 1 bk & pka ≤
Pm

k ¼ 1 ck & eka for all co-player’s action profiles a
ϵ {C, D}m.

3. A strategy p 2 RL that is self-cooperative in game k but self-defective in all
other games is a game k semi-partner if and only if bk & ð1 $ pkaÞ $ ck &
ð1 $ ekaÞ≥

P
l≠kbl p

l
a $

P
l≠kcl e

l
a for all co-player’s action profiles a ϵ

{C, D}m.
In the case of m= 2, the condition for partners simplifies to condition (5) in the

main text. The above results are also illustrated in Supplementary Fig. 2.
Similarly, we can characterize partners, semi-partners, and defector among the

reactive strategies for the unlinked case (for details, see Supplementary Note 3,
Proposition 4).

1. A strategy p 2 RU that is self-cooperative in each game k is a partner if
and only if pkD ≤ 1 $ ck=bk for all games k.

2. A strategy p 2 RU that is self-defective in each game k is a defector if and
only if pkC ≤ ck=bk for all games k.

3. A strategy p 2 RU that is self-cooperative in game k and self-defective in
all other games is a game k semi-partner if and only if pkD ≤ 1 $ ck=bk and
plC ≤ cl=bl for all l ≠ k.

For the special case of m= 2 games, the respective condition for partners yields
condition (4) in the main text. Supplementary Fig. 1 provides a graphical
illustration. As one may expect, when there is only m= 1 game, the respective
conditions in the linked case coincide with the respective conditions for the
unlinked case. In particular, the condition for partner strategies yields a maximum
cooperation rate after defection of pkD ¼ 1 $ ck=bk , which recovers the value of
the classical Generous Tit-for-Tat strategy3,4. We can also use the above conditions
for partners, semi-partners, and defectors to calculate how abundant the respective
strategies are among all reactive strategies. This calculation confirms that for most
parameter values, partners are more abundant when games are linked (see
Supplementary Fig. 3 and Supplementary Note 3 for details).

Analytical results for memory-1 strategies. The simulations for memory-1
players in Fig. 4 suggest that in the unlinked case, players establish little coop-
eration when bk < 2ck. In contrast, in games with bk > 2ck, cooperation seems to be
maintained with the strategy Win-Stay Lose-Shift (WSLS). A player with that
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strategy cooperates if and only if either both players have cooperated in the pre-
vious round of the respective game, or if no one did. In the linked case, evolving
strategies resemble a different strategy, which we term CIC. Players with this
strategy use in each round the same action in all games they participate in. This
action is cooperation if and only if in each game, players used the same action in
the last round; otherwise they defect.

We can characterize for which parameter values bk and ck these two strategies
are subgame perfect equilibria. A subgame perfect equilibrium is a refinement of
the Nash equilibrium: players are required not to have an incentive to deviate after
any previous history of play56. We obtain the following conditions (Supplementary
Note 4, Proposition 5).

1. WSLS is a subgame perfect equilibrium if and only if bk ≥ 2ck for all k.
2. CIC is a subgame perfect equilibrium if and only if ∑kbk ≥ 2∑kck.
The two conditions again reflect one reason why full cooperation is easier to

sustain in the linked case. Unlinked strategies like WSLS require that the benefit
satisfies bk ≥ 2ck in every single game. In contrast, in the linked case, CIC only
requires that this condition is met on average, across all games. In particular,
players may use cooperation in high-benefit games (with bk > 2ck) as a means to
achieve cooperation in low-benefit games (with bk < 2ck).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw data generated with these computer simulations is available from the authors
upon reasonable request.

Code availability
All simulations and numerical calculations have been performed with MATLAB R2014A.
We provide the respective code in Supplementary Note 5.
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