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Abstract

Researchers have explored the performance of Iterated Prisoner’s Dilemma strategies for

decades, from the celebrated performance of Tit for Tat to the introduction of the zero-deter-

minant strategies and the use of sophisticated learning structures such as neural networks.

Many new strategies have been introduced and tested in a variety of tournaments and popu-

lation dynamics. Typical results in the literature, however, rely on performance against a

small number of somewhat arbitrarily selected strategies, casting doubt on the generalizabil-

ity of conclusions. In this work, we analyze a large collection of 195 strategies in thousands

of computer tournaments, present the top performing strategies across multiple tournament

types, and distill their salient features. The results show that there is not yet a single strategy

that performs well in diverse Iterated Prisoner’s Dilemma scenarios, nevertheless there are

several properties that heavily influence the best performing strategies. This refines the

properties described by Axelrod in light of recent and more diverse opponent populations to:

be nice, be provocable and generous, be a little envious, be clever, and adapt to the environ-

ment. More precisely, we find that strategies perform best when their probability of coopera-

tion matches the total tournament population’s aggregate cooperation probabilities. The

features of high performing strategies help cast some light on why strategies such as Tit For

Tat performed historically well in tournaments and why zero-determinant strategies typically

do not fare well in tournament settings.

Author summary

In 1980, political scientist Robert Axelrod ran one of the most famous computer tourna-

ments of the Iterated Prisoner’s Dilemma (IPD). The winner? The now-famous strategy,

Tit for Tat. Axelrod attributed its success to simple properties such as: do not be envious,

avoid being the first to defect, and do not be overly clever. Yet the tournament design,

using only a small, selected set of strategies, not including random noise, and having fixed

game lengths, raises questions about the generalizability of these results. Many researchers

have continued to make similar assumptions in their own IPD experiments, limiting the

insights that can be applied to more complex, realistic settings.
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In our study, we address these limitations by analyzing the performance of a large and

diverse collection of IPD strategies across thousands of computer tournaments. We find

that, while no single strategy consistently excels, successful strategies share key character-

istics: they are nice, provocable and generous, a little envious, clever, and adapt to the

environment. More precisely, strategies perform best when their probability of coopera-

tion matches the total tournament population’s aggregate cooperation probabilities.

Introduction

The Iterated Prisoner’s Dilemma (IPD) is a repeated two-player game that models behavioral

interactions, specifically interactions where self-interest clashes with collective interest. It

encompasses a wide range of social and biological phenomena. In each turn of the game, both

players simultaneously and independently decide between cooperation (C) and defection (D).

This decision is made with the memory of all prior interactions. The payoffs for each player at

each turn are influenced by their own choice and the choice of the other player. To this end,

the payoffs of the game are defined by

Cooperate ðCÞ Defect ðDÞ

Cooperate ðCÞ

Defect ðDÞ

R;R S;T

T; S P; P

 !

:
ð1Þ

where typically T> R> P> S and 2R> T + S. The most common values used in the literature

[1] are R = 3, P = 1, T = 5, S = 0, and these are the values also used in this work.

Conceptualizing strategies and understanding the best way to play the game have been of

interest to the scientific community since the formulation of the game [2–13]. This extends to

both tournament settings and population dynamics. Computer tournaments became a com-

mon evaluation technique for newly designed strategies following Axelrod’s computer tourna-

ments in the 1980s [2, 14]. The winner of both of Axelrod’s tournaments [2, 14] was the simple

strategy Tit For Tat (TFT). TFT cooperates on the first turn and thereafter copies the previous

action of its opponent, retaliating against defections with a defection and forgiving a defection

if followed by cooperation. Axelrod concluded that the strategy’s robustness was due to four

properties, which he adapted into four suggestions for success in an IPD tournament:

1. Do not be envious by striving for a payoff larger than the opponent’s payoff.

2. Be “nice” by not being the first to defect.

3. Reciprocate both cooperation and defection; Be provocable to retaliation and forgiveness.

4. Do not be too clever by scheming to exploit the opponent.

Forgiveness, in this context, is a strategy’s ability to cooperate after a DC outcome to achieve

mutual cooperation again. In environments without noise, TFT would end up in DC only if it

had received a defection and then retaliated. Subsequently, TFT would forgive an opponent

that apologizes (in a DC round) by returning to cooperation, as mutual cooperation is deemed

better than mutual defection.

Due to the strategy’s strong performance in both tournaments and a series of evolutionary

experiments [1], TFT was often claimed to be a highly robust (and sometimes the most robust)

strategy for the IPD. There are strategies that have built upon TFT and the reciprocity-based

approach. In [5], a strategy called Gradual was introduced, constructed to have the same
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qualities as those of TFT with one addition. Gradual has a memory of the previous rounds of

play in the game, recording the number of defections by the opponent and punishing them

with a growing number of defections. It then enters a calming state in which it cooperates for

two rounds. A strategy with the same intuition as Gradual is Adaptive Tit for Tat [15]. Adap-

tive Tit for Tat maintains a continually updated estimate of the opponent’s behavior and uses

this estimate to condition its future actions. Other research has built upon the limitations of

TFT. For example, in [16–19], it was shown that TFT suffered in environments with noise.

This was mainly due to the strategy being too provocable and its lack of generosity and contri-

tion. Since TFT immediately punishes a defection, in a noisy environment, it can get stuck in a

repeated cycle of defections and cooperations. Some new strategies, more robust in tourna-

ments with noise, were soon introduced, including Nice and Forgiving [16], Generous Tit For

Tat [3], and Pavlov (aka Win Stay Lose Shift) [4], as well as later variants such as OmegaTFT

[20].

Finally, others introduced strategies deviating completely from the originally suggested

properties of success. For example, a set of “envious” Iterated Prisoner’s Dilemma (IPD) strat-

egies were introduced, called zero-determinant strategies (ZDs), in [6]. These strategies

attempt to force a linear relationship between stationary payoffs against their opponents,

potentially ensuring that they receive a higher average payout. While ZDs were introduced

with a small tournament in which some were reportedly successful [21], this result has not gen-

erally held in future work [22]. Furthermore, in [23], a series of “clever” strategies trained

using reinforcement learning were introduced. These strategies were trained using lookup

tables [24], hidden Markov models [23], and finite-state automata [25], on a set of 170

strategies.

One thing that has remained the same is that the introduction of a new strategy is often

accompanied by a claim that the new strategy is the best performing strategy for the IPD,

often without extensive testing against a broad spectrum of opponents or representative classes

of opponents. The lack of testing against formally defined strategies and tournament winners

is understandable given the effort required to implement the hundreds of published IPD strat-

egies. Implementing prior strategies faithfully is often extremely difficult or impossible due to

insufficient descriptions and lack of published implementations or code. Despite these chal-

lenges, the absence of thorough testing raises concerns about claims regarding the superiority

or robustness of newly introduced strategies.

Beyond these difficulties, we believe that limited comprehensive analyses are rooted in field

conventions. Tournaments or evolutionary dynamics often rely on a select list of hand-picked

strategies chosen by modelers, typically based on specific properties they wish to examine.

This practice may stem from misconceptions, such as the assumption that because TFT per-

forms relatively well, it is sufficient to test only against TFT variants. Another misconception

may stem from the Press & Dyson result [6], which implies that lower memory strategies will

always dominate pairwise interactions, leading some to consider only memory-one strategies.

However, this result holds strictly only in pairwise interactions.

It is not only the set of strategies or the tournament parameters such as noise that may

impact results but also the design of the round-robin tournament itself. To address this [26]

separately examined the effects of changes in format, objective criteria, and payoff values on

tournament outcomes. They demonstrated that TFT’s performance declined under certain

conditions. To our knowledge, this is the only study that has reanalyzed the tournament struc-

ture and critically evaluated it. However, in this work, we employ an extensive list of strategies

made possible by the Axelrod-Python package, an approach that would have been difficult

to achieve previously. Unlike the authors of that study, we do not consider a new tournament

design.
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In this paper, we evaluate the performance of a significant number of IPD strategies across

a diverse array of tournaments. Many of the strategies used in our analysis are drawn from

well-known and named strategies in IPD literature, including previous tournament winners.

This contrasts with other work that is often constrained to specific classes such as as memory-

one strategies or those of a certain structural form like finite state machines or deterministic

memory-two strategies. Furthermore, our tournaments encompass variations, including stan-

dard tournaments resembling Axelrod’s original ones, tournaments with noise, probabilistic

match length, and both noise and probabilistic match length. This diversity in strategies and

tournament types provides new insights and tests earlier claims in alternative settings against

known powerful strategies. More specifically, we show that the previous tournament winners

are lacking against large enough opponent pools; they do not appear among the top-perform-

ing strategies anymore. This could be due to likely suffering from a lack of diversity in the

strategies they were trained/tested against, finding it hard to adapt to the new strategies.

It is important to note that we do not assert the existence of a single best-performing strat-

egy across all tournaments or tournament types. On the contrary, our work demonstrates that

such a strategy does not exist (notwithstanding a few strategies with broadly high perfor-

mance). The primary objective of this paper, presented in the latter parts of the paper, is to

continue the discussion on the properties of successful strategies, a conversation started by

Axelrod. The results of our analysis conclude that the properties of a successful strategy in the

Iterated Prisoner’s Dilemma (IPD) are:

1. Be a little bit envious

2. Be “nice” in non-noisy environments or when game lengths are longer

3. Reciprocate both cooperation and defection appropriately; Be provocable in tournaments

with short matches, and generous in tournaments with noise

4. It’s ok to be clever

5. Adapt to the environment; Adjust to the mean population cooperation

We believe that the discussion on the properties of winning strategies holds significant

importance. It aims to provide guidance to researchers designing new strategies and those

training strategies. Specifically, much like the recognized value of diversity in training datasets

[27], such as variations in image perspective, skin color, etc., are critical in training accurate

and generalizable machine learning models, we show that diversity in the population of oppo-

nent strategies is of paramount importance in the construction and evaluation of game theory

strategies. Moreover, conducting a similar analysis can shed light on already trained strategies,

aiding in understanding the key features they have autonomously developed during their

training processes.

Model

The data collection of various types of tournaments and the use of different strategies are made

possible due to an open-source library called Axelrod-Python [28] (version 3.0.0).

Axelrod-Python enables the simulation of IPD tournaments and contains an extensive

list of strategies. Most of these strategies are described in the literature, with a few exceptions

contributed specifically to the package. In this paper, we use a total of 195 strategies, which can

be found in the Supplementary Material (S1 Text). The package supports several tournament

types, and this work considers standard, noisy, probabilistic ending, and noisy probabilistic

ending tournaments.
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Standard tournaments are similar to Axelrod’s well-known tournaments [2]. In these tour-

naments, there are N strategies, and each strategy plays an iterated game with n turns against

all other strategies, not including self-interactions. Noisy tournaments also involve N strategies

and n turns, but in each turn, there is a probability pn that a player’s action is flipped. Com-

pared to these two tournaments, in probabilistic ending tournaments the number of turns is

not fixed. Instead, a match between strategies ends with a given probability pe. Finally, noisy
probabilistic ending tournaments incorporate both a noise probability pn and an ending proba-

bility pe. For smoother results, each tournament is repeated k times, and this repetition factor

was allowed to vary to assess the impact of smoothing. The winner of each tournament is

determined based on the average score achieved by a strategy from the entire set of repetitions,

not by the number of wins.

To run a tournament, only a few lines of code are required (Fig 1). Specifically, one needs

to define the list of strategies that the players use when participating in the tournament, the

number of repetitions, the number of turns or the probability of each match ending, and the

probability of noise. We demonstrate two examples in Fig 1: one with a fixed number of turns

and one with a probabilistic ending. A tournament is an instance of the Tournament class.

To execute the tournament, users need to run the play() method, which returns an instance

of the ResultSet class. This instance includes many details of the tournament, such as the

winner and the average score of the participants. Additionally, the instance contains a more

detailed summary of the tournament, which we use in our analysis. We describe the results

summary in detail below.

The process of collecting tournament results is outlined in Algorithm 1. For each trial, a

random size N is selected, and a random list of N strategies from the 195 available. Subse-

quently, one standard, one noisy, one probabilistic ending, and one noisy probabilistic ending

tournament are conducted for the selected list of strategies. The parameters for the tourna-

ments, as well as the number of repetitions, are chosen once for each trial. We have run a total

of 11400 trials of Algorithm 1. For each trial, we collect the results for four different tourna-

ments, resulting in a total of 45600 (11400 × 4) tournament results. Each tournament outputs

a result summary in the form of Table 1.

Fig 1. Example usage of the Axelrod-Python package for running tournaments. The strategies that players use are saved in a list, which is then

passed to the Tournament class. In this example, strategies we previously discussed, such as TFT, Generous Tit-for-Tat, Gradual, and a stochastic strategy

evolved through reinforcement learning, are included. We create a standard tournament where noise is set to 0, as well as a noisy tournament with

probabilistic ending. Once an instance of the tournament class is defined, executing the tournament is straightforward. The play() method generates

all possible pairs from the list of strategies, including pairs where each strategy plays against itself, and then iterates through each match to play it. Each

match is repeated according to the specified number of repetitions, with results aggregated to a tournament summary.

https://doi.org/10.1371/journal.pcbi.1012644.g001
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Algorithm 1: Tournament Data Collection Algorithm
for seed 2 [0, 11420] do
N  randomly select integer 2 [3, 195];
players  randomly select N players;
k  randomly select integer 2 [10, 100];
n  randomly select integer 2 [1, 200];
pn  randomly select float 2 [0, 1];
pe  randomly select float 2 [0, 1];
result standard  Axelrod.tournament(players, n, k);
result noisy  Axelrod.tournament(players, n, pn, k);
result probabilistic ending  Axelrod.tournament(players, pe, k);
result noisy probabilistic ending  Axelrod.tournament(players, pn,

pe, k);
return result standard, result noisy, result probabilistic ending,
result noisy probabilistic ending;

The summary contains statistics regarding each strategy that participated in the tourna-

ment, such as its rank, cooperation rate, time spent in each state when only a single past round

is considered, and the probability of cooperating after each of the four possible outcomes of

the previous round. In our analysis, we will use the measures for each strategy provided in the

summary, as well as additional measures we calculated. Namely, these include the SSE error,

the average, median, maximum, and minimum cooperation rates in each tournament. The

SSE (introduced in [29]) shows how closely a strategy behaves as a zero-determinant strategy

and subsequently in an extortionate way. We also consider how each strategy’s cooperation

rate Cr compares to those of the tournament as a whole, for example, by comparing Cr to Cmax.

During the data collection process, the probabilities of noise (pn) and tournament ending

(pe) were allowed to take values between 0 and 1. However, commonly used values for these

probabilities are pn� 0.1 and pe� 0.1. This is to make the results more interpretable. For

example, consider a strategy competing in an environment with pn> 0.1. In cases with a high

value of noise, most of the actions the strategy takes are the complete opposite of what the

strategy is designed to do. Therefore, we will focus on the tournaments for which pn� 0.1 and

pe� 0.1. Thus, the results presented here pertain to subsets of the noisy and probabilistic end-

ing tournaments. Specifically, the results rely on 1150 tournaments with noise, 1134 tourna-

ments with a probabilistic ending, and 117 tournaments with both noise and a probabilistic

ending. We also provide an analysis of the paper considering the entire datasets, and these

results are presented in the Supplementary Material (S1 Text). The general results of the analy-

sis are not affected by the restriction of the noise and probabilistic ending probabilities.

Table 1. Result summary example of a tournament. A result summary consists of N rows, with each row containing information for each strategy that participated in the

tournament. This information includes the strategy’s rank (R), median score, the cooperation rate (Cr), the number of match wins, and the probability that the strategy

cooperated in the opening move. Additionally, it provides the probabilities of a strategy being in any of the four states (CC, CD, DC, DD) and the cooperation rate after

each state.

Rates

Rank Name Median score Cooperation rating (Cr) Win Initial C CC CD DC DD CC to C CD to C DC to C DD to C

0 EvolvedLookerUp2 2 2 2.97 0.705 28.0 1.0 0.639 0.066 0.189 0.106 0.836 0.481 0.568 0.8

1 Evolved FSM 16 Noise 05 2.875 0.697 21.0 1.0 0.676 0.020 0.135 0.168 0.985 0.571 0.392 0.07

2 PSO Gambler 1 1 1 2.874 0.684 23.0 1.0 0.651 0.034 0.152 0.164 1.000 0.283 0.000 0.136

3 PSO Gambler Mem1 2.861 0.706 23.0 1.0 0.663 0.042 0.145 0.150 1.000 0.510 0.000 0.122

4 Winner12 2.835 0.682 20.0 1.0 0.651 0.031 0.141 0.177 1.000 0.441 0.000 0.462

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

https://doi.org/10.1371/journal.pcbi.1012644.t001
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Results

Top ranked strategies across tournaments

A strategy has participated in multiple tournaments of each type, and to evaluate its overall

performance, we introduce a measure called the normalized rank. In each tournament, the

strategies receive a rank (R), where 0 denotes that the strategy was the winner, and N − 1 indi-

cates that the strategy came last in the tournament. The normalized rank, denoted as r, is calcu-

lated as r ¼ R
N� 1

. Thus, the rank a strategy achieved over the number of players in the

tournament. The performance of the strategies is assessed based on the median of the normal-
ized rank, denoted as �r .

For example, let’s consider the well-known strategies TFT and Gradual. Each strategy par-

ticipated in several tournaments of each type. In Fig 2 we show the distribution of the normal-

ised ranks of these strategies in each of the four tournaments. We can observe that TFT looks

to be normally distributed normalized rank. In comparison, Gradual’s performance has longer

tails, indicating that there were tournaments where the strategy performed very well or very

poorly. Overall, Gradual achieves a lower median rank, signifying that it performs better than

TFT except in the case of noisy and probabilistic ending tournaments (lower rank is better).

The top 15 strategies for each tournament type, based on �r , are presented in Table 2, while

the r distributions for the top-ranked strategies can be found in Fig 3.

In standard tournaments dominating strategies were those trained using reinforcement

learning techniques. 10 out of the 15 top strategies were introduced in [23]. These strategies

are based on finite state automata (FSM), hidden Markov models (HMM), artificial neural net-

works (ANN), lookup tables (LookerUp), and stochastic lookup tables (Gambler). They have

been trained using reinforcement learning algorithms (evolutionary and particle swarm algo-

rithms) to perform well against a subset of the strategies in Axelrod-Python in a standard

Fig 2. Examples of normalized rank distributions for two strategies, TFT and Gradual. We plot the distributions of

r for the two strategies in the four tournament types. As a reminder, lower values of r correspond to better

performances. The top left quadrant of each plot shows the distribution for standard tournaments (fixed number of

turns and no noise). The top right quadrant shows the distribution for noisy tournaments (fixed number of turns and

noise). The bottom left quadrant shows the distribution for probabilistic ending tournaments (no noise and

probabilistic ending). Finally, the bottom right quadrant shows the distribution for noisy probabilistic ending

tournaments (noise and probabilistic ending). In each quadrant, we also show the number of data points. Both

strategies participated in a similar number of tournaments. Based on the median rank, which we use in this work to

define overall performance, TFT performs best in probabilistic ending tournaments, whereas Gradual was in standard

tournaments.

https://doi.org/10.1371/journal.pcbi.1012644.g002
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tournament. Thus, their performance in the specific setting was anticipated, although still

noteworthy given the random sampling of tournament participants. DoubleCrosser and Back-

Stabber, both from the Axelrod-Python, use the number of turns and are set to defect in

the last two rounds. These strategies can be characterized as “cheaters” because their source

code allows them to know the number of turns (unless the match has a probabilistic ending).

These strategies were expected to not perform as well in tournaments where the number of

turns is not specified. Finally, Winner 12 [22] and DBS [30] are both from the literature. DBS

is a strategy specifically designed for noisy environments; however, it ranks highly in standard

tournaments as well. Similarly, the fourth-ranked player, Evolved FSM 16 Noise 05, was

trained for noisy tournaments yet performs well in standard tournaments.

In the case of noisy tournaments, the top-performing strategies include strategies specifi-

cally designed for noisy tournaments. These are DBS, Evolved FSM 16 Noise 05, Evolved ANN

5 Noise 05, PSO Gambler 2 2 2 Noise 05, and Omega Tit For Tat [20]. Omega TFT, a strategy

designed to break the deadlocking cycles of CD and DC that TFT can fall into in noisy environ-

ments, places 10th. The rest of the top ranks are occupied by strategies that performed well in

standard tournaments and deterministic strategies such as Spiteful Tit For Tat [31], Level Pun-

isher [32], Eugine Nier [33].

Furthermore, in tournaments with probabilistic endings, the highly ranked strategies

leaned towards defecting strategies and trained finite state automata, as demonstrated by the

works of Ashlock et al. [34, 35]. The most effective strategies in probabilistic ending tourna-

ments are also a series of ensemble Meta strategies, trained strategies that performed well in

standard tournaments, and Grudger [28] and Spiteful Tit for Tat [31]. The Meta strategies [28]

utilize a team of strategies and aggregate the potential actions of the team members into a sin-

gle action in various ways.

While no single strategy consistently outperforms all others in any of the distinct tourna-

ment types or across various tournament types, certain types of strategies consistently achieve

Table 2. Top performances for each tournament type based on �r . The results of each type are based on 11420 unique tournaments. The results for noisy tournaments

with pn< 0.1 are based on 1151 tournaments, and for probabilistic ending tournaments with pe< 0.1 on 1139. The top ranks indicate that trained strategies perform well

in a variety of environments, but so do simple deterministic strategies. For noisy tournaments DBS is the top ranked strategy with �r ¼ 0, thus DBS won every tournament

it participated in. The same for Evolved FSM 16 Noise 05 in probabilistic ending.

Standard Noisy (pn� 0.1) Probabilistic ending (pe � 0.1) Noisy probabilistic ending

Name �r Name �r Name �r Name �r
0 Evolved HMM 5 0.007 DBS 0.0 Evolved FSM 16 0.0 Raider 0.022

1 Evolved FSM 16 0.01 Evolved FSM 16 Noise 05 0.008 Evolved FSM 16 Noise 05 0.013 MEM2 0.037

2 EvolvedLookerUp2_2_2 0.011 Evolved ANN 5 Noise 05 0.013 MEM2 0.027 Prober 3 0.039

3 Evolved FSM 16 Noise 05 0.017 BackStabber 0.024 Evolved HMM 5 0.043 Evolved FSM 16 Noise 05 0.048

4 PSO Gambler 2_2_2 0.022 DoubleCrosser 0.025 EvolvedLookerUp2_2_2 0.049 Hard Prober 0.072

5 Evolved ANN 0.029 Evolved ANN 5 0.028 Spiteful Tit For Tat 0.059 Spiteful Tit For Tat 0.078

6 Evolved ANN 5 0.034 Evolved ANN 0.038 Nice Meta Winner 0.069 Better and Better 0.089

7 PSO Gambler 1_1_1 0.037 Spiteful Tit For Tat 0.051 NMWE Finite Memory 0.069 Grudger 0.091

8 Evolved FSM 4 0.049 Evolved HMM 5 0.051 NMWE Deterministic 0.07 Fortress4 0.096

9 PSO Gambler Mem1 0.05 Level Punisher 0.052 Grudger 0.07 Meta Winner Memory One 0.099

10 Winner12 0.06 Omega TFT 0.059 NMWE Long Memory 0.074 NMWE Long Memory 0.099

11 Fool Me Once 0.061 Fool Me Once 0.059 Nice Meta Winner Ensemble 0.076 Nice Meta Winner 0.104

12 DBS 0.071 PSO Gambler 2_2_2 Noise 05 0.067 EvolvedLookerUp1_1_1 0.077 NMWE Deterministic 0.109

13 DoubleCrosser 0.072 Evolved FSM 16 0.078 NMWE Memory One 0.08 NMWE Memory One 0.112

14 BackStabber 0.075 EugineNier 0.08 NMWE Stochastic 0.085 Nice Meta Winner Ensemble 0.115

https://doi.org/10.1371/journal.pcbi.1012644.t002
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top rankings. These include strategies that have undergone training, those that retaliate, and

those that adapt their behavior based on preassigned rules to optimize outcomes. These find-

ings challenge some of Axelrod’s suggestions, particularly the advice to “not be clever” and

“not be envious”.

Fig 3. r distributions of the top 15 strategies in different environments. A lower value of �r corresponds to a more successful performance. A strategy’s r distribution

skewed towards zero indicates that the strategy ranked highly in most tournaments it participated in. Most distributions are skewed towards zero.

https://doi.org/10.1371/journal.pcbi.1012644.g003
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The effect of strategy features on performance

For each strategy, we have a variety of features as described in Table 3. These features capture

measures related to a strategy’s behavior in the tournaments it competed in, as well as intrinsic

properties, such as whether a strategy is deterministic or stochastic. The correlation coeffi-

cients between the features for performance evaluation, the median score and the median nor-

malised rank are given by Table 4. The correlation coefficients between all features have also

been calculated and a graphical representation can be found in the Supplementary Material

(S1 Text).

In standard tournaments, the features CC to C, Cr, Cr/Cmax, and the cooperating ratio com-

pared to Cmedian and Cmean have a moderately negative effect on the normalized rank (a smaller

rank is better) and a moderate positive effect on the median score. The SSE error and the DD

Table 3. Included features for performance evaluation analysis. Stochastic, makes use of length and makes use of game are APL classifiers that determine whether a strat-

egy is stochastic or deterministic, whether it makes use of the number of turns or the game’s payoffs. The memory usage is calculated as the number of turns the strategy

considers to make an action (which is specified in the APL) divided by the number of turns. The SSE (introduced in [29]) shows how close a strategy is to behaving as a

ZDs, and subsequently, in an extortionate way. The method identifies the ZDs closest to a given strategy and calculates the algebraic distance between them as the sum of

squared error (SSE). A SSE value of 1 indicates no extortionate behaviour at all whereas a value of 0 indicates that a strategy is behaving as a ZDs. The memory usage of

strategies is the number of rounds of play used by the strategy when deciding on an action, divided by the number of turns in each match. For example, Winner12 uses the

previous two rounds of play, and if participating in a match with 100 turns its memory usage would be 2/100. For strategies with an infinite memory size, for example

Evolved FSM 16 Noise 05, memory usage is equal to 1. Note that for tournaments with a probabilistic ending the number of turns was not collected, so the memory usage

feature is not used for probabilistic ending tournaments. The rest of the features considered are the CC to C, CD to C, DC to C, and DD to C rates as well as cooperating

ratio of a strategy, the minimum (Cmin), maximum (Cmax), mean (Cmean) and median (Cmedian) cooperating ratios of each tournament.

feature feature explanation source value type min value max value

stochastic If a strategy is stochastic strategy classifier from

APL

boolean Na Na

makes use of game If a strategy makes used of the game information strategy classifier from

APL

boolean Na Na

makes use of length If a strategy makes used of the number of turns strategy classifier from

APL

boolean Na Na

memory usage The memory size of a strategy divided by the number of turns memory size from APL float 0 1

SSE A measure of how far a strategy is from ZD behaviour method described in [29] float 0 1

max cooperating rate (Cmax) The biggest cooperating rate in a given tournament result summary float 0 1

min cooperating rate (Cmin) The smallest cooperating rate in a given tournament result summary float 0 1

median cooperating rate

(Cmedian)

The median cooperating rate in a given tournament result summary float 0 1

mean cooperating rate (Cmean) The mean cooperating rate in a given tournament result summary float 0 1

Cr / Cmax A strategy’s cooperating rate divided by the maximum result summary float 0 1

Cmin / Cr The minimum divided by a strategy’s cooperating rate result summary float 0 1

Cr / Cmedian A strategy’s cooperating rate divided by the median result summary float 0 1

Cr / Cmean A strategy’s cooperating rate divided by the mean result summary float 0 1

Cr The cooperating ratio of a strategy result summary float 0 1

CC to C rate The probability a strategy will cooperate after a mutual cooperation result summary float 0 1

CD to C rate The probability a strategy will cooperate after being betrayed by the

opponent

result summary float 0 1

DC to C rate The probability a strategy will cooperate after betraying the opponent result summary float 0 1

DD to C rate The probability a strategy will cooperate after a mutual defection result summary float 0 1

pn The probability of a player’s action being flip at each interaction trial summary float 0 1

n The number of turns trial summary integer 1 200

pe The probability of a match ending in the next turn trial summary float 0 1

N The number of strategies in the tournament trial summary integer 3 195

k The number of repetitions of a given tournament trial summary integer 10 100

https://doi.org/10.1371/journal.pcbi.1012644.t003
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to C rate have the opposite effects. Thus, in standard tournaments, behaving cooperatively cor-

responds to a more successful performance. Even though being nice generally pays off, that

does not hold against defective strategies. Being more cooperative after a mutual defection,

that is not retaliating, is associated with lesser overall success in terms of normalized rank.

Compared to standard tournaments, in both noisy and noisy probabilistic ending tourna-

ments, the higher the rates of cooperation, the lower a strategy’s success and median score. A

strategy would not want to cooperate more than both the mean and median cooperator in

such settings. In probabilistic ending tournaments, the cooperation rate of the winners and its

relative comparison to the cooperation rates of the tournament have no effect. The only fea-

tures that have an effect are the CD to C rate, which is the tendency of a strategy to forgive, and

the SSE rate, which has a positive effect on the normalized rank.

A multivariate linear regression has been fitted to model the relationship between the fea-

tures and the normalized rank. Based on the graphical representation of the correlation matri-

ces given in the Supplementary Material (S1 Text), several features are highly correlated and

have been removed before fitting the linear regression model. The features included are given

in Table 5 alongside their corresponding p values in distinct tournaments and their regression

coefficients. The CD to C rate has a positively statistically significant effect on the normalized

rank across all tournament types. This suggests that being generous tends to lower one’s per-

formance. In the case of probabilistic ending tournaments, the coefficient of the CD to C rate

Table 4. Correlations between the features of Table 3 and the normalised rank and the median score. For each type of tournament, standard, noisy, probabilistic end-

ing, and noisy probabilistic ending, we conduct a correlation analysis. For each tournament, we check the correlation between each feature used in our analysis and the

normalized random and median scores. Note that the correlation coefficients are calculated using Spearman’s rank correlation coefficient. A negative value indicates a neg-

ative correlation, and in the case of the normalized rank, a smaller rank translates to a better position in the tournament.

Standard Noisy pn � 0.1 Probabilistic ending pe � 0.1 Noisy probabilistic ending

r median score r median score r median score r median score

CC to C rate -0.501 0.501 -0.210 0.194 -0.336 0.348 0.087 0.015

CD to C rate 0.226 -0.199 0.337 -0.235 0.458 -0.352 0.609 -0.372

DC to C rate 0.127 -0.100 0.227 -0.111 0.164 -0.105 0.410 -0.203

DD to C rate 0.412 -0.396 0.549 -0.391 0.433 -0.378 0.615 -0.407

Cr -0.323 0.383 0.298 -0.051 -0.060 0.160 0.595 -0.213

Cmax 0.000 0.050 -0.000 0.244 -0.000 0.079 -0.000 0.296

Cmin 0.000 0.085 0.000 -0.070 0.000 0.128 0.000 0.000

Cmedian 0.000 0.209 0.000 0.572 -0.000 0.324 0.000 0.667

Cmean 0.000 0.229 -0.000 0.583 -0.000 0.354 -0.000 0.689

Cr / Cmax -0.323 0.381 0.307 -0.076 -0.060 0.156 0.608 -0.246

Cmin / Cr 0.109 -0.080 -0.141 -0.011 0.024 0.029 -0.335 0.092

Cr / Cmedian -0.330 0.353 0.326 -0.258 -0.065 0.111 0.614 -0.464

Cr / Cmean -0.331 0.357 0.325 -0.228 -0.066 0.114 0.617 -0.431

N -0.000 -0.009 -0.000 -0.017 -0.000 0.011 0.000 0.139

k -0.000 -0.002 -0.000 -0.003 -0.000 0.010 -0.000 0.035

n -0.000 -0.125 -0.000 -0.392 - - - -

pn - - 0.000 -0.244 - - 0.000 -0.272

pe - - - - 0.000 0.257 0.000 0.568

Make use of game -0.003 -0.022 -0.047 0.014 -0.046 0.022 -0.110 0.057

Make use of length -0.158 0.124 -0.224 0.139 -0.173 0.128 -0.206 0.115

SSE 0.473 -0.452 0.589 -0.412 0.458 -0.418 0.571 -0.383

stochastic 0.006 -0.024 0.010 -0.007 -0.001 0.001 -0.001 0.002

memory usage -0.098 0.108 -0.080 0.114 - - - -

https://doi.org/10.1371/journal.pcbi.1012644.t004
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is the highest, indicating that one should be more provocative in this setting. Similarly, the SEE

error rate has a positive effect on the normalized rank, suggesting that being extortionate pays

off, especially in noisy tournaments. The measures of cooperation, Cr and Cr/Cmax, also exhibit

a significant effect. In noisy probabilistic ending tournaments, this effect is positive; however,

the coefficient is very close to zero. In other tournament types, the effect is negative, indicating

that one should aim to be less cooperative than the mean cooperator of the tournament. How-

ever, we cannot interpret the result as suggesting that a strategy should be as uncooperative as

possible.

The results presented here suggest that generosity/provocation and a strategy’s cooperation

rate, particularly in comparison to the tournament averages, are significant features. The anal-

ysis suggests that strategies should be more generous in noisy tournaments and less generous

in probabilistic ending tournaments. Moreover, strategies should aim to not cooperate more

than the mean cooperator in their tournaments. We note the analysis is limited as we only con-

sider a linear relationship between these parameters and the rank. To further investigate the

effects of the parameters discussed in this section, we have conducted a more detailed analysis

in the next section, focusing on the performances of the winners of the tournaments.

Features of top performing strategies

In Fig 4, we present the distributions of the cooperation ratio and Cr/Cmean for the winners of

tournaments. A value of Cr/Cmean = 1 implies that the cooperation ratio of the winner was the

same as the mean cooperating ratio of the tournament, and we observe that this occurs for

most tournament types, apart from the case of noisy and probabilistically ending tournaments.

In the case of probabilistic ending tournaments, there are several winners that cooperated

much less than that, confirming the results of the previous section that defecting strategies can

be winners in probabilistic ending tournaments. The distribution of the cooperation rates

Table 5. Results of multivariate linear regressions with r as the dependent variable. R squared is reported for each model. The R scores of the fitted models indicate

their capability to explain some of the variation in the median rank. Most of the features have a statistically significant effect on the normalized rank. A multivariate linear

regression has also be fitted on the median score. The coefficients and p values of the features can be found in Supplementary Material (S1 Text). Both approaches lead to

similar conclusions.

Standard Noisy pn� 0.1 Probabilistic ending pe � 0.1 Noisy probabilistic ending

R adjusted: 0.541 R adjusted: 0.373 R adjusted: 0.457 R adjusted: 0.537

Coefficient p-value Coefficient p-value Coefficient p-value Coefficient p-value

constant 0.695 0.000 0.560 0.000 0.627 0.000 0.345 0.005

CC to C rate -0.042 0.000 -0.163 0.000 -0.046 0.000 0.032 0.029

CD to C rate 0.297 0.000 0.064 0.000 0.412 0.000 0.292 0.000

DC to C rate 0.198 0.000 0.142 0.000 0.193 0.000 0.193 0.000

SSE 0.258 0.000 0.328 0.000 0.190 0.000 0.228 0.000

Cmax -0.068 0.000 -0.048 0.214 -0.040 0.347 -0.011 0.936

Cmin -0.161 0.000 -0.029 0.367 -0.049 0.017 0.008 0.912

Cmean 0.117 0.000 -0.133 0.000 -0.159 0.000 -0.468 0.000

Cmin / Cr 0.057 0.000 -0.006 0.322 0.054 0.000 0.034 0.099

Cr / Cmean -0.468 0.000 -0.073 0.000 -0.150 0.000 0.094 0.000

k 0.000 0.325 0.000 0.965 0.000 0.079 0.000 0.065

n 0.000 0.000 - - - - - -

memory usage -0.010 0.000 -0.008 0.000 - - - -

Cr / Cmedian - - 0.069 0.001 -0.142 0.000 - -

pn - - -0.131 0.010 - - -0.278 0.048

pe - - - - -0.071 0.016 0.320 0.024

https://doi.org/10.1371/journal.pcbi.1012644.t005
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showcases a high cooperation rate in standard tournaments and probabilistic ending tourna-

ments. In tournaments with noise, we observe a much less cooperative behavior, which could

result from strategies being cautious of potential flip actions by the co-player or strategies not

suited for noise holding grudges against defections.

Analyzing the SSE distributions across different tournament types (Fig 5) suggests that suc-

cessful strategies exhibit some extortionate behavior, though not consistently. ZDs are a set of

strategies that are often envious, as they attempt to exploit their opponents. The winners of the

tournaments considered in this work demonstrate envious behavior, but not to the extent

observed in many ZDs. While the exact interactions between matches are not recorded here,

the work of [23], which introduced the trained strategies appearing in the top-ranked strategies

of Section, did record such interactions. In [23], it was shown that clever strategies managed to

achieve mutual cooperation with stronger strategies while exploiting weaker ones. This could

explain the clever winners in our analysis and the observed SSE distributions.

This might also be the reason why ZDs fail to appear in the top ranks—they attempt to

exploit all opponents and cannot actively adapt back to mutual cooperation against stronger

strategies, which requires a deeper memory. It’s worth noting that ZDs tend to perform poorly

in population games for a similar reason: they aim to exploit other players using ZDs, failing to

form a cooperative subpopulation [36]. This makes them effective invaders but poor at resist-

ing invasion.

Finally, we examine the distributions of the cooperation rates after the outcomes CC, CD,

DC, and DD, as shown in Fig 6. In the case of cooperating after mutual cooperation, the results

Fig 4. Distributions of Cr and Cr/Cmean for the winners of tournaments. In this distribution, we consider the winners of the tournaments, specifically the strategies that

ranked first in each tournament. For each type of tournament, we plot the cooperation rate of the winner in the tournament they won, as well as the ratio of the winner’s

cooperation rate to that of the entire tournament. A value of Cr/Cmean = 1 implies that the cooperation ratio of the winner was the same as the mean cooperation ratio of

the tournament.

https://doi.org/10.1371/journal.pcbi.1012644.g004
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align with expectations; the distributions skew towards 1, indicating that the winners of the

tournaments are more likely to cooperate after mutual cooperation. Regarding the CD out-

come and the likelihood to cooperate after such a result, capturing generosity, the distributions

skew towards 1/2, not 1, suggesting that strategies need to reduce their readiness to forgive.

This aligns with the known result that Generous Tit For Tat generally outperforms TFT in

most settings. In probabilistic ending tournaments, there is a peak at 0, suggesting that strate-

gies should not be too generous in tournaments with short matches. Such a peak also appears

in standard tournaments; however, not in tournaments with noise, where a strategy should be

more generous.

Part of a strategy’s envious behavior can be captured by the rate of DC to C. In noisy tourna-

ments, winners are not too envious, but in tournaments without noise, we can see that winners

behave in two ways. Some are a bit envious, whereas others are very envious. In the DD to D, we

can observe that, expectedly, the results are skewed towards 0. However, there are winners that

attempt to recover from a DD outcome. The remaining results are as expected, skewed towards 0.

Discussion

This manuscript explores the performance of 195 strategies in the IPD in thousands of com-

puter tournaments. The collection of computer tournaments presented here is the largest and

most diverse in the literature. The 195 strategies are drawn from Axelrod-Python library

and include strategies from the IPD literature. The computer tournaments encompass four

different types. So, what is the best way to play the IPD? And is there a single dominant strat-

egy for the IPD? There was not a single strategy within the collection of 195 strategies that

Fig 5. Distributions of SSE error for the winners of tournaments. Here, we again consider the winners of the

tournaments, separated by type of tournament, and plot their SSE error. As a reminder, the SSE error indicates how

closely a strategy behaves like a Zero-Determinant (ZD) strategy, and subsequently, in an extortionate way. An SSE

value of 1 indicates no extortionate behavior at all, whereas a value of 0 indicates that a strategy is behaving as a ZD.

https://doi.org/10.1371/journal.pcbi.1012644.g005
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Fig 6. Distributions of rates CC to C, CD to C, DC to C, and DD to C for the winners of tournaments. The result summary from the tournaments records how often

each strategy cooperated after each possible outcome of the previous round. Specifically, we analyze the probability with which a strategy chose C following the outcomes.

Here, we plot the distributions of these probabilities for the winners of the tournaments. We separate them by type of tournament, from top to bottom: standard, noisy,

probabilistic ending, and noisy probabilistic ending. From left to right, we plot the distributions of cooperation after the outcomes CC, CD, DC, and DD.

https://doi.org/10.1371/journal.pcbi.1012644.g006
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managed to perform well in all the tournament variations it competed in. A strategy ranking

highly in a specific environment did not guarantee its success over different tournament types,

with a few exceptions—strategies that generalize better. Already well-known in the AI/ML lit-

erature, adding noise to training data leads to more robust models [37]. We see that clearly

here, where the strategies trained for noise (or designed for noise) tend to be better generalists.

There were instances where a few strategies trained in narrow conditions outperformed more

generalist strategies, as they tend to overfit. However, the strategies trained with noise perform

well in general, whilst the strategies trained specifically on no noise or small subpopulations do

not.

We also examined the best-performing strategies across various tournament types and ana-

lyzed their salient features. This demonstrated that there are properties associated with the suc-

cess of strategies that contradict the originally suggested properties of Axelrod [1]. We showed

that complex or clever strategies can be effective, whether trained against a corpus of possible

opponents or purposely designed to mitigate the impact of noise such as the DBS strategy.

Moreover, we found some strategies designed or trained for noisy environments were also

highly ranked in noise-free tournaments which reinforces the idea that strategies’ complexity/

cleverness is not necessarily a liability, rather it can confer adaptability to a more diverse set of

environments. We also showed that while the type of exploitation attempted by ZDs is not typ-

ically effective in standard tournaments, envious strategies capable of both exploiting and not

their opponents can be highly successful. Based on the results of [23] this could be because

they are selectively exploiting weaker opponents while mutually cooperating with stronger

opponents. Highly noisy or tournaments with short matches also favoured envious strategies.

These environments mitigated the value of being nice. Uncertainty enables exploitation,

reducing the ability of maintaining or enforcing mutual cooperation, while triggering grudg-

ing strategies to switch from typically cooperating to typically defecting.

The features analysis of the best performing strategies demonstrated that a strategy should

reciprocate, as suggested by Axelrod, but it should relax its readiness to do so and be more gen-

erous. For noisy environments this is inline with the results of [16–19], however, we also

showed that generosity pays off even in standard settings, and that in fact the only setting a

strategy would want to be too provocable is when the matches are not long. Forgiveness as

defined by Axerlod was not explored here. This was mainly because the two round states were

not recorded during the data collection. This could be a topic of future work that examines the

impact of considering more rounds of history. The features analysis also concluded that there

is a significant importance in adapting to the environment, and more specifically, to the

mean cooperator. In most tournament types, the winner of the tournament was also the aver-

age cooperator. Even in tournaments with short matches where defecting behavior could

secure a win, a large number of winners were average cooperators.

This could potentially explain the early success of TFT. TFT naturally achieves a coopera-

tion rate near Cmean by virtue of copying its opponent’s last move while also minimizing

instances where it is exploited by an opponent (cooperating while the opponent defects), at

least in non-noisy tournaments. It could also explain why Tit For N Tats does not fare well for

N> 1—it fails to achieve the proper cooperation ratio by tolerating too many defections.

Our results may also help explain the historically unexpected effectiveness of memory-one

strategies [38]. The success of these strategies contradicts the intuitive assumption that a longer

memory and therefore more information would yield better strategic performance [39]. Given

that among the important features associated with success are the relative cooperation rate to

the population average and the four memory-one probabilities of cooperating conditional on

the previous round of play, these features can be optimized by a memory-one strategy such as

TFT. Usage of more history becomes valuable when there are exploitable opponent patterns.
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This is indicated by the importance of SSE as a feature, showing that the first-approximation

provided by a memory-one strategy is no longer sufficient. These results highlight a central

idea in evolutionary game theory in this context: the fitness landscape is a function of the pop-

ulation (where fitness in this case is tournament performance) [40]. While that may seem obvi-

ous now, it shows why historical tournament results on small or arbitrary populations of

strategies have so often failed to produce generalizable results.

To this end, many strategies, such as Win-Stay-Lose-Shift and Generous Tit For Tat,

emerged due to their strong performance in evolutionary dynamics. Axelrod’s original work

relied on computer tournaments, so we chose to remain consistent with this approach, as a

comprehensive study like ours had not yet been undertaken. However, evolutionary settings

would be an exciting direction for future study.

Overall, the five properties successful strategies need to have in a IPD competition based

on the analysis that has been presented in this manuscript are:

1. Be “nice” in non-noisy environments or when game lengths are longer

2. Be provocable in tournaments with short matches, and generous in tournaments with noise

3. Be a little bit envious

4. Be clever

5. Adapt to the environment (including the population of strategies).

The results presented here were based only on a subset of the whole data we have collected.

The analysis of the full dataset is discussed in the Supplementary Material (S1 Text). However,

we can see that the general results of our work remain the same. In the Supplementary Material

(S1 Text), we also evaluate the importance of features using a random forest classifier and a

clustering approach. The results of these analyses are also in line with the results presented

here.

The data set described in this work contains the largest number of IPD tournaments, to the

authors knowledge. The raw data set is available at [41] and the processed data at [42]. Further

data mining could be applied and provide new insights in the field.

Supporting information

S1 Text. Supplementary material. This document provides details of further analysis, a sum-

mary of all parameters and notations used in the manuscript, and a comprehensive list of all

strategies considered in this work.
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