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Direct reciprocity is a powerful mechanism for cooperation in social dilemmas. The very
logic of reciprocity, however, seems to require that individuals are symmetric, and that
everyone has the same means to influence each others’ payoffs. Yet in many applications,
individuals are asymmetric. Herein, we study the effect of asymmetry in linear public
good games. Individuals may differ in their endowments (their ability to contribute
to a public good) and in their productivities (how effective their contributions are).
Given the individuals’ productivities, we ask which allocation of endowments is optimal
for cooperation. To this end, we consider two notions of optimality. The first notion
focuses on the resilience of cooperation. The respective endowment distribution ensures
that full cooperation is feasible even under the most adverse conditions. The second
notion focuses on efficiency. The corresponding endowment distribution maximizes
group welfare. Using analytical methods, we fully characterize these two endowment
distributions. This analysis reveals that both optimality notions favor some endowment
inequality: More productive players ought to get higher endowments. Yet the two
notions disagree on how unequal endowments are supposed to be. A focus on resilience
results in less inequality. With additional simulations, we show that the optimal
endowment allocation needs to account for both the resilience and the efficiency
of cooperation.

social dilemmas | direct reciprocity | inequality | public good games | evolution of cooperation

Everyday life is rich in situations where individuals have to decide whether to act for the
benefit of the group or their individual gain. These situations are commonly referred to
as social dilemmas (1, 2). For pro-social behavior to be maintained in these settings, it
takes some mechanism that enables individuals to overcome selfish interests (3). Direct
reciprocity is one such mechanism (4–6). It requires individuals to interact repeatedly,
so that previous actions may shape future decisions. As a result, even in the absence of
explicit punishments, cooperation can evolve and be stable.

Most previous studies on the evolution of reciprocity focus on fully symmetric
interactions (7–26). In these studies, individuals are perfectly interchangeable. This
assumption plays a critical role in the context of direct reciprocity, because it implies that
the ability to increase or reduce an opponent’s payoff is identical across individuals. If,
however, individuals differ in their costs and benefits of cooperation, some individuals
might be harder to discipline than others, making cooperation more difficult to sustain.
This has, for instance, been shown in the context of endowment inequality (27–43).
Endowment inequality is often identified with real-world inequalities in income or
wealth, which have a negative impact on social outcomes more generally (44–48). Such
observations suggest that if individuals are otherwise symmetric, endowment inequality
ought to be as small as possible to promote cooperation. However, in addition to
endowment inequality, individuals often differ along multiple other dimensions, such
as their level of skill. In such a context, recent studies suggest that a perfectly equal
endowment distribution may not be optimal for cooperation either (49–51). This raises
the question what the optimal level of endowment inequality is. This paper aims to
provide an answer to that question.

Taking the framework of Hauser et al. (52) as a starting point, we study repeated linear
public good games among asymmetric players. Our baseline model contains two sources
of asymmetry. First, players may differ in their endowments, which influences how much
they can contribute to the public good. Second, players may differ in their productivities,
which influences how effective contributions are. Given the players’ productivities,
we ask how endowments should be optimally allocated. To tackle that question, we
introduce two notions of optimality. First, we characterize the endowment distribution
that results in the highest “resilience of cooperation”. Here, individuals are able to enforce
cooperation even as the game’s continuation probability approaches the theoretical
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minimum. Second, we characterize the endowment distribution
that exhibits the highest “efficiency of cooperation.” This distri-
bution maximizes social welfare in the best possible equilibrium.
We identify those two optimal distributions for any form of
heterogeneity in individual productivities and any group size.

We find that according to both notions, more productive
players ought to get higher endowments. The exact magnitude
of this optimal endowment inequality, however, depends on
which notion is used, and on the parameters of the game. In
particular, we identify scenarios where resilience of cooperation
requires endowments to be almost equal even though produc-
tivities are not. Conversely, we also describe scenarios in which
minor differences in productivities result in major differences
in endowments. As a general rule, we find that the efficiency-
maximizing endowment distribution is always more unequal
than the resilience-maximizing one. This suggests that there is
a non-trivial trade-off between the resilience of cooperation and
efficiency. To further study this trade-off, we simulate learning
dynamics among interacting individuals. These simulations
suggest that the endowment distribution that performs best lies
on a Pareto frontier between efficiency and resilience. Where
exactly that point is located depends on the chosen parameter
values. When parameters are generally favorable to cooperation,
payoffs are highest when endowments are close to the efficiency-

maximizing distribution. In contrast, in noisy environments in
which cooperation is generally difficult to sustain, payoffs are
higher when the endowment distribution prioritizes resilience.

This work highlights how different objectives, such as effi-
ciency or resilience, have different implications for the optimal
allocation of endowments within groups. While both objectives
tolerate some endowment inequality, this inequality needs to be
smaller when cooperation is to be resilient.

Results
Model. We consider a repeated linear public good game among
n players. At every time step t, each player i receives an
endowment ei. Subsequently, each player decides how much of
the endowment to contribute toward the public good, ci(t), and
how much to consume individually, ei − ci(t) (Fig. 1A). The
contribution of a player i is multiplied by a productivity factor
ri, with 1 < ri < n, which may differ across players (Fig. 1B).
The total amount of the public good produced equals the sum of
all effective contributions

∑n
i=1 rici(t). This amount is equally

divided among all players, independently of their contributions
(Fig. 1 C and D). Individual payoffs �i(t) are determined by
the quantity of the public good received, and the individually
consumed shares of the endowments (Fig. 1E),

1
3

×

×

×

A Players make contributions from 
their endowment B Contributions are scaled up by 

productivity factors C Scaled contributions 
form the public good D Public good is 

divided evenly

E Payoffs equal shares from public good 
plus endowment share not contributed

:

: +

: +

1
3

1
3

F The space of possible endowment 
distributions between 3 players G Two possible endowment 

distributions between 3 players

= =

Fig. 1. Schematic representation of the model. Players engage in a repeated linear asymmetric public good game. In every round, each player i receives an
endowment ei . (A) Players choose how much to contribute toward the production of the public good, ci , from their available endowment, ei . (B) All individual
contributions are multiplied by individual productivity factors, ri . (C) The size of the public good is defined as the sum of all effective contributions. (D) After its
production, the public good is divided equally among all players. (E) Individual payoffs are equal to the nth share of the public good plus the remaining share
of the endowment that players did not contribute toward the public good. (F ) Without loss of generality, we assume

∑n
i=1 ei = 1. In the case of a three-player

game, we can represent the endowment distributions in a simplex, where each point corresponds to a vector e = (e1 , e2 , e3). (G) We aim to identify the optimal
endowment distribution with respect to different objectives.
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�i(t) = ei − ci(t) +
1
n

n∑
j=1

rjcj(t). [1]

Without loss of generality, we assume that endowments are
normalized such that

∑n
i=1 ei = 1. Accordingly, we refer

to the vector e = (e1, . . . , en) as an endowment distribution.
This distribution summarizes how endowments are allocated
among the players (Fig. 1 F and G). For example, the vector
e=(1/n, . . . , 1/n) describes an equal allocation.

If the above game is only played for a single round, full
defection is the only equilibrium, for any endowment distribu-
tion. However, here we assume that after each round t, there is
another round with a fixed continuation probability 0 < � < 1.
Equivalently, one may also interpret our setup as that of a game
with infinitely many rounds, and � as the extent to which players
care about their future payoffs (53). In each case, Player i’s
expected payoff over all rounds, with a normalizing factor of
1− �, is given by

�̂i = (1− �)
∞∑
t=0

�t�i(t). [2]

For repeated games, the Folk theorem (54, 55) states that any
individually rational outcome can be sustained in a Subgame
Perfect Nash Equilibrium (SPNE), provided � is sufficiently close
to 1. In the following, we are particularly interested in equilibria
with full cooperation, meaning that all players choose ci(t) = ei
in every single round t (By this definition, a player i who happens
to get no endowment is considered fully cooperative, even though
the player contributes ci(t) = ei = 0 every round). In general,
whether or not an equilibrium with full cooperation exists
depends on how endowments are allocated. For large �, there
are generally many different endowment distributions for which
a fully cooperative equilibrium exists. But as � decreases, the
respective set of endowment distributions shrinks. In that sense,
endowment distributions differ in how resilient cooperation
is to adverse circumstances. Moreover, due to the variation
in individual productivities, different endowment distributions
result in different levels of welfare even if everyone fully
cooperates. We therefore investigate the resilience of cooperation
and the resulting welfare implications.

More specifically, we distinguish two objectives: First, we aim
to find the endowment distribution that sustains full cooper-
ation at the lowest �. We call this the “resilience-maximizing
endowment distribution.” Second, we are interested in the
endowment distribution that allows for the highest group welfare
in equilibrium. We refer to this as the “efficiency-maximizing
endowment distribution.”

The Resilience-Maximizing Endowment Distribution. It turns
out that there is a surprisingly elegant characterization of the
resilience-maximizing endowment distribution. In the following,
we provide a summary of our corresponding findings. All details
and formal derivations are described in SI Appendix.

First, we show that for an arbitrary (but fixed) set of
productivities r = (r1, . . . , rn), there is always an endowment
distribution e and a continuation probability � < 1 such that
full cooperation is possible. Next, if also the values of � and e are
fixed, we prove that full cooperation is sustainable in an SPNE
exactly if

(�D− In)e ≥ 0. [3]

Here, D is an n× n matrix with entries Dij = rj
n−ri for i 6= j and

Dii = 0, and In is the n × n identity matrix. We observe that
for the given endowment distribution e, there exists a minimal
continuation probability �min(e) that satisfies Eq. 3. Hence full
cooperation is sustainable in a SPNE if and only if � ≥ �min(e).
Because � can be interpreted as the patience of players, or how
much they value their future payoffs, this lower bound on �
can be considered to be a measure of how hard it is to sustain
cooperation with the given endowment distribution. The lower
this minimum �min(e), the easier it is to sustain cooperation.

Based on this observation, we define the resilience-maximizing
endowment distribution e∗ to be the one with the smallest value
of �min(e), that is, e∗ := arg mine �min(e). We use the notation
�∗min := �min(e∗) for the corresponding minimal continuation
probability. Using inequality Eq. 3, we can derive e∗ and �∗min
for any number of players n and individual productivities r.
We show that e∗ is exactly the Perron eigenvector of D, and
the corresponding eigenvalue is equal to (�∗min)

−1 (SI Appendix,
Text S3). This provides a simple method for calculating e∗ for
any set of parameters and any group size. For the special case of
a two-player game, we recover Hauser et al.’s (27) result that the
resilience-maximizing endowment distribution is equal to

e∗1 =

√
r2(2− r2)√

r1(2− r1) +
√
r2(2− r2)

and

e∗2 =

√
r1(2− r1)√

r1(2− r1) +
√
r2(2− r2)

.

Based on our characterization for n players, we can derive
general properties of the resilience-maximizing endowment
distribution e∗. We find that the relationship between e∗i and
ri is always order preserving. That is, more productive players
always need to have a larger endowment than less productive
players in order to guarantee the highest resilience of cooperation.
Nonetheless, the degree of endowment inequality according to e∗
may vary significantly. It depends on the ratio between players’
individual productivities and the size of the group, ri/n. The
smaller the productivities are in relation to n, the more equal
e∗ is. In particular, fixing individual productivities at some
level and increasing n results in e∗ getting arbitrarily close to
(1/n, . . . , 1/n). To see this, we note that for large n, the off-
diagonal entries of the matrix D approach Dij = rj/n, which
is independent of i. For the resulting matrix D, the uniform
distribution is a right eigenvector.

We illustrate this effect in Fig. 2. When the players’ pro-
ductivities are comparably low (Fig. 2A), we observe a resilience-
maximizing endowment allocation that is approximately uniform
(Fig. 2B). However, due to the low productivities, cooperation is
not very resilient (Fig. 2C ). Keeping the variance in productivities
fixed while increasing their overall level (such that Player 1’s
productivity is almost equal to n, Fig. 2D) results in a very
unequal endowment allocation. Now, Player 1 receives almost
all of the endowment (Fig. 2E). Yet, despite the high inequality
in endowments, cooperation becomes more resilient (Fig. 2F ).
We further extend our argument by doubling the number of
players, while keeping the productivities fixed (Fig. 2G). This
reduces ri/n by half. This new six-player game with identical
variance in productivities again results in an almost uniform
distribution e∗ (Fig. 2H ). The resilience of cooperation is
intermediate in this case.
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Fig. 2. Resilience-maximizing endowment distribution. (A) To demonstrate the degree of inequality in the resilience-maximizing endowment distribution, we
construct three examples of games, all of which have the same level of heterogeneity in productivities. In this first example, three players with comparatively
low productivities interact. (B) When the ratio ri/n is low, then the resilience-maximizing endowment distribution is close to (1/n, . . . ,1/n). (C) With productivities
close to 1, cooperation is challenging: �min = 0.620. (D–F ) Cooperation becomes more attractive and much easier to sustain. �min = 0.005. The resulting
degree of inequality of e∗ increases. (G–I) With high productivities, but more players, the endowment distribution is again close to (1/n, . . . ,1/n). The required
continuation probability is now �min = 0.238, which is lower than in the previous example, but higher than in the example with low productivities. (I) We
demonstrate the general principle by systematically varying group size while keeping productivities fixed (up to multiplicity). We plot the degree of inequality of
the resulting resilience-maximizing endowment distribution measured by the ratio between the highest and the lowest endowments in the allocation. As the
ratio ri/n decreases, the resilience-maximizing endowment allocation approaches (1/n, . . . ,1/n).

We can formalize this result by deriving an upper bound on
the relative difference between players’ endowments with respect
to e∗. This upper bound is given by

maxi e∗i
mini e∗i

≤
n− 1

n−maxi ri
. [4]

In particular, if there is some number k such that productivities
do not exceed n/k, then the absolute difference in endowments
is bounded by (maxi e∗i −mini e∗i ) ≤ 1/(k − 1).

Efficiency-Maximizing Endowment Distribution. The social-
dilemma nature of the game implies that higher cooperation
achieves greater group welfare. However, not all endowment

allocations allow for full contributions in equilibrium and, due
to the individual heterogeneity in productivity, full cooperation
yields different levels of welfare with different endowment
distributions.

We define welfare as the sum of the individual (expected)
payoffs. If all players contribute fully, the group welfare can be
expressed as a function of endowments:

Φ(e) :=
n∑

i=1
�̂i =

n∑
i=1

riei, [5]

where �̂i is as defined in equation Eq. 2.
Maximization of the group’s welfare constitutes an optimiza-

tion problem of finding an endowment distribution e† under

4 of 9 https://doi.org/10.1073/pnas.2315558121 pnas.org
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A B C

D E F

Fig. 3. Trade-off between efficiency and resilience of cooperation. We demonstrate the difference between the resilience- and efficiency-maximizing
endowment distributions in a three-player example. (A) We chose the productivity vector to be r = (2.7,1.5,1.1). (B) The resulting resilience-maximizing
endowment distribution yields the total social welfare of Φ = 2.025. (C) We find that the efficiency-maximizing endowment at � = 0.3 is more unequal and
yields a total group payoff of Φ = 2.174. (D and E) We formulate a multi-objective optimization problem where both the resilience and efficiency are varied. The
Pareto optimal values are shown by the pink line. (F ) We run simulations to test which of the endowment distributions performs best when players adopt straz
tegies based on a stochastic learning process. We find that in general, the highest cooperation levels are achieved along the Pareto frontier. Indeed, the total
maximum group payoff of 1.729 is achieved at emaxW = (0.65,0.35,0).

which full cooperation is sustainable and which maximizes
welfareΦ(e). We refer to e† as an “efficiency-maximizing endow-
ment distribution.” While finding an explicit expression for e† is
not possible in general (SI Appendix, Section S4), we can obtain
numerically exact solutions for any group size n. Furthermore,
we can fully characterize the general functional form of e†

in the two-player case (considering without loss of generality
r1 ≥ r2) as

e†
1 =

�r2
2− r1 + �r2

and e†
2 =

2− r1
2− r1 + �r2

. [6]

As expected, the efficiency-maximizing endowment distribu-
tion allocates larger shares of the endowment to more productive
players. While this effect is similar to the effect of the resilience-
maximizing endowment distribution, the resulting degree of
inequality differs (Fig. 3 A–C ). In fact, there exist parameters
r and � such that the efficiency-maximizing distribution results
in an exclusion of the least productive players by allocating them a
zero-share of the total endowment. This is in stark contrast to the
resilience-maximizing endowment distribution; for e∗, we prove
that all players are always allocated a positive share (SI Appendix,
Corollary 7).

Trade-Off between Efficiency and Resilience. Since the endow-
ment distributions e∗ and e† are generally not the same, we
further analyze the relation between them. There are two possible
cases: First, the resilience-maximizing endowment distribution
e∗ simultaneously also achieves maximal efficiency. This occurs
exactly if � = �∗min (in which case there is a unique endowment
distribution that can sustain cooperation), or if all players have the
same productivity (in which case every endowment distribution
has the same efficiency). Second, in all other cases, we can prove
that under any measure of inequality, the efficiency-maximizing
endowment distribution e† is always more unequal than the
resilience-maximizing distribution e∗.

Given there is a trade-off between the two objectives in most
settings, we combine them into a multi-objective optimization
setup. We visualize the resulting Pareto frontier between the
resilience of cooperation and its efficiency in Fig. 3 D and E.
The pink line indicates the maximum welfare that can be
sustained for any value of �min(e) (Fig. 3D). Each point on
this line corresponds to an endowment distribution e with the
corresponding values of �min(e) and Φ(e) (Fig. 3E). Generally,
the most efficient endowment allocation e† is located at the
boundary of the set of all endowment allocations that allow
for full cooperation. Hence, while securing a maximal group
payoff, it also poses the greatest strain on the resilience of
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cooperation. On the other hand, the resilience-maximizing
endowment allocation always requires higher equality while
yielding lower welfare, signifying the trade-off between efficiency
and resilience.

Dynamics of Cooperation. To complement these static equilib-
rium results, in the following, we explore when cooperation
can emerge for a given set of endowments and productivities.
To this end, we no longer assume that players act optimally
from the outset. Rather, they adapt their strategies over time
to optimize their payoffs. To model this, we use introspection
dynamics (27, 56), a learning process where players are repeatedly
selected at random to revise their strategies. When selected,
players compare their current payoff with the payoff they could
have obtained with a randomly generated alternative strategy.
The higher the payoff of the alternative, the more likely players
switch (as described in detail in Materials and Methods). In line
with the literature on direct reciprocity (7–26), we assume that
individuals can only adopt pure memory-one strategies. That
is, players condition their actions only on the outcome of the
previous round (6). Moreover, in any given round, players either
contribute their entire endowment or nothing at all. The resulting
learning dynamics can be represented by a Markov chain. By
computing its invariant distribution, we can infer the frequencies
of each of the memory-one strategies in the long run.

To start with, we explore the simplest possible case of a game
with two players with equal productivities. Here, the resilience-
maximizing and efficiency-maximizing endowment distributions
coincide at e1 = e2 = 0.5. In agreement with this prediction,
we find that equal endowments are most favorable to the
evolution of cooperation (Fig. 4B). We also find, as expected,

that higher values of the selection strength parameter allow for
more cooperation (Fig. 4C ). The effect of the error rate " however
is not monotonous (Fig. 4A). As has been documented in the past,
a moderate amount of errors can be beneficial, because errors pre-
vent the neutral invasion of conditionally cooperative strategies
like “Win-Stay Lose-Shift” by unconditional cooperators (57).
Excessive errors, however, are always detrimental to cooperation,
because they render conditionally cooperative strategies unstable.

Next, we look at a scenario with heterogeneity in individual
productivities. We find that the endowment distribution that
achieves the highest group welfare is located somewhere between
the resilience-maximizing and efficiency-maximizing endowment
distributions (Fig. 4E). Its exact location depends on the error
rate and the selection strength. We observe that an increase in the
selection strength results in a clear shift toward higher efficiency
of the endowment distribution (Fig. 4F ). In contrast, the error
rate can have varying effects (Fig. 4E). As a rule of thumb, in
more noisy settings (either because of a high error rate, or a low
selection strength), allocations close to the resilience-maximizing
endowment distribution tend to result in a higher welfare.

In addition, SI Appendix, Fig. S1 reports the resulting average
cooperation rates. As can be seen, endowment allocations for
which we observe the maximum group welfare are different
from the endowment allocations that maximize cooperation
(Fig. 4E and SI Appendix, Fig. S1E). To gain intuition for
why this is the case, we look at the distribution of strategies
for each endowment distribution of interest. Apart from the
efficiency- and resilience-maximizing endowment distributions,
we also include the endowment distributions where we observe
maximum group payoffs, emaxW , and maximum cooperation
rates, emaxC , (SI Appendix, Fig. S2), respectively. It appears that

A B C

D E F

Fig. 4. Evolutionary simulations of the group welfare. In order to gain a deeper insight into the behavior of the dynamics, we provide results of extensive
simulations of a two-player game for a wide range of parameters of the dynamics, that is, the error rate and the intensity of selection. (A–C) We first study
the evolution of cooperation with equal productivities. Here, the dashed vertical lines bound the region where cooperation is sustainable at �=1 according to
the analytical model. We choose three error rate values for comparison: very rare errors, very frequent errors, and the error rate "∗ = 0.019 that yields the
highest welfare at e = e∗ (indicated by the solid vertical line). As can be seen, some (rare) errors can help the evolution of cooperation by ensuring stability
of cooperative strategies such as WSLS (57). Here, there is no unique e†, since all endowment distributions where full cooperation is sustainable (shaded in
blue), yield identical welfare. Near the boundaries of this interval, we observe very low cooperation rates, while the highest group welfare is observed at the
resilience-maximizing endowment in the center. (D–F ) Next, we consider a two-player game with unequal productivities given as r1 = 1.3 and r2 = 1.9. We
employ the same logic for the choice of the parameters and obtain "∗ = 0.043. As can be seen in panel (E), the highest group welfare is no longer attained at e∗
but at a point in between e† and e∗. For "∗, we denote that point as emaxW. It is equal to (0.21,0.79). As with equal productivities, we find that higher selection
strength increases welfare. Here, it also shifts the endowment emaxW closer to e†.
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WSLS is the most abundant strategy for all of these endowment
distributions apart from e†, where it is not evolutionarily stable.
WSLS is less prone to invasion at e∗ and emaxC for higher error
rates (SI Appendix, Fig. S3).

We also explore the dynamics of cooperation in a three-player
game (Fig. 3F ). As predicted by the model, cooperation is higher
when the most productive player obtains the largest endowment.
Similarly, we observe that the endowment distributions with the
highest group payoffs all lie close to the Pareto frontier between
resilience and welfare, which connects the resilience-maximizing
and efficiency-maximizing endowment distribution.

Discussion
Numerous studies have shown that wealth inequality can pose
a challenge to cooperation (27–43). Since wealth inequality
is abundant in many social settings, addressing it is often an
important objective for policy makers. Perhaps one of the most
straightforward ways of reducing inequality is through wealth
redistribution (58–64). As a naive generalization of the theoretical
and experimental findings, one could reach the conclusion that
any wealth inequality is detrimental to cooperation and welfare,
implying that redistribution should aim for equal allocations.
However, our analysis shows that finding an allocation that
most easily facilitates cooperation while maximizing welfare is
non-trivial.

We show that when productivity differs across people, an equal
endowment allocation is neither optimal for the resilience of
cooperation nor for the maximization of welfare. Yet, consistent
with previous findings (27–43), we also find that excessive levels
of endowment inequality cause cooperation to break down.
We show how the optimal degree of endowment inequality
varies with several parameters. In particular, it depends on the
ratio between group size and individual productivities: if the
players’ productivities are fixed, larger groups require more equal
endowments to maximize the resilience of cooperation, all the
way to perfect equality in the limit of large group size (Fig. 2).

Our findings also point to a connection between the “resilience
of cooperation” and “resilience of biological systems” (? ). A
higher resilience in our model means that full cooperation can be
sustained for a wider range of continuation probabilities. If � is
seen as a parameter of the environment, then an endowment
distribution with higher resilience allows for cooperation in
environments that are less favorable to cooperation in the
sense that they have a lower �. Interpreted more loosely, when
endowments are more resilient, cooperation can withstand
greater perturbations of the environment.

To what degree resilience can be sacrificed for efficiency gains
depends on the context. We explore this trade-off with introspec-
tion dynamics (56). We find that the endowment allocation that
generates the highest welfare under these learning dynamics is
located on the Pareto frontier between resilience and efficiency,
balancing these two objectives. These observations are in line
with a behavioral experiment conducted by Hauser et al. (52).
Interestingly, emaxW and emaxC are close to the endowments
chosen for the treatments in the experiment. Similar to our
numerical results, the authors find that cooperation rates for both
of these allocations are roughly the same (approximately 73%)
with a higher welfare achieved at the endowment allocation closer
to emaxW .

Throughout this main text, we have focused on full coopera-
tion in linear public good games with asymmetry in endowments
and productivities. However, our theoretical results, as presented

in SI Appendix, are valid within a framework that is significantly
more general in two aspects. First, we allow for the public good to
be distributed unequally (SI Appendix, Text S1). This weakens the
public-good character of the game, but logically strengthens our
results. Second, we consider arbitrary levels of contributions and
derive all results with no restrictions on stochasticity, memory,
or time dependence of strategies (SI Appendix, Text S3).

We believe our work makes at least two important contribu-
tions to the literature on the evolution of cooperation through
direct reciprocity. First, we considerably extend earlier results by
Hauser et al. (27). Although they discuss which endowment
distributions might maximize resilience (there: “endowment
distribution most conducive to cooperation”), their analysis is
restricted to groups of size two. Instead, here we provide an
elegant formalism that allows us to compute e∗ for any number
of players. In this way, we can analyze the interaction between
parameters of the game and the optimal degree of inequality. Our
method can be used to further study the effects of inequality in
more general settings, for example, in structured populations or
when allowing for communication or signaling among players.
Second, we study the effect of inequality on the interplay between
the resilience and efficiency of cooperation. Our results for a
general n-player linear public good game indicate that there
exist non-trivial trade-offs, which need to be accounted for when
deciding on the allocation of wealth. We explore these trade-offs
using evolutionary simulations. Overall, our results suggest that
a positive degree of inequality can be beneficial for cooperation,
in particular in small-group interactions, while in other settings,
almost perfect equality is optimal even in the face of intrinsic
differences between individuals.

Materials and Methods

Model. Consider a game with n players who interact in an infinite sequence of
rounds t = 0, 1, 2, . . . . Each player has a fixed positive endowment ei ≥ 0,
where

∑
i ei = 1 without loss of generality. In each round t, each player i

chooses a contribution ci(t) ∈ [0, ei] to make toward the public good. The
productivity matrix R, a parameter of the game subject to below constraints,
governs the relationship between contributions and payoffs as

�(t) = e− c(t) + Rc(t), for all t.

There are three constraints on R. First, Rij ≥ 0 for all i, j, ensuring that an
increase in one player’s contribution does not decrease any player’s return from
the public good. Second, Rii < 1 for all i, so that a player’s one-round payoff
is higher the less they contribute. Third,

∑
j Rji > 1 for all i, meaning that the

group payoff of all players taken together is higher the more Player i contributes.
The second and third conditions create a tension between the individual and
the collective interest, which makes this game a social dilemma. The restricted
model discussed in the main text is the special case where R is of the form
Rij = rj/n for some r = (r1, . . . , rn).

Equilibrium Analysis. We determine when it is possible for a given contri-
bution sequence (c(t))t to occur in a SPNE. We introduce a normal form of
the productivity matrix R, which we call the zero-diagonal form, and denote
it by D. It is given by Dij = Rij/(1 − Rii) for all i 6= j and Dii = 0 for
all i. The game defined by D is equivalent to the game defined by R in the
sense that the two games permit exactly the same equilibria, while the fact
that the diagonal entries of D are zero simplifies the analysis. We show that
a contribution sequence (c(t))t is sustainable in a SPNE exactly if c̄(t) ≤
�Dc̄(t + 1) for all t (SI Appendix, Text S2 and Theorem 1), where c̄(t) =
(1− �)

∑
∞

�=0 �
� c(t + �) is the continuation contribution after round t. For

a given contribution sequence (c(t))t , we define �min((c(t))t) as the smallest
continuation probability � for which the sequence is sustainable.
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Evolutionary Analysis. We study introspection dynamics, a simple learning
process (56). Players use pure memory-one strategies where in a given round
they either contribute the entire endowment or nothing, that is, ci(t) ∈ {0, ei}.
We represent strategies by a vector p = (pc)c, where c ranges over the
2n possible outcomes of one round. Each component pc ∈ {0, 1} specifies
whether after a round with outcome c, a player with a strategyp contributes their
entire endowment (pc = 1) or nothing (pc = 0). However, in our simulations
players are also prone to making errors with a probability " > 0, meaning
that they sometimes play an action not prescribed by their strategy. Since that
makes the process ergodic and we only focus on its asymptotic behavior, our
representation of strategies does not contain an initial move.

At every time step of the learning process, a player is chosen to consider
switching their strategy. The player compares their current strategy to a randomly
generated, alternative strategy in terms of average payoff and adopts the
alternative with probability

� =
1

1 + es(�alt−�cur)
,

where �cur and �alt are the payoffs of the current strategy and the alternative,
respectively. The parameter s ≥ 0 reflects the strength of selection. Higher
values of s correspond to stronger selection.

We use different implementations of the learning process depending on n.
For n=2, we calculate the asymptotic distribution by numerically representing
the stochastic process as a transition matrix of a Markov chain. We then calculate
the average payoffs as expected values under the invariant distribution as

�i =
∑
c

vc · �i(c),

where�i is Player i’s average payoff, v is the invariant distribution of the Markov
chain, and �i(c) is Player i’s payoff in a round with contribution vector c. For
n = 3, we run an agent-based simulation for N = 106 generations and report
the average group payoffs.

Parameters used for Figures. Fig. 2 A–C shows a three-player game with
productivities r1 = 1.6, r2 = 1.3, r3 = 1.1. In Fig. 2 D–F, the relative
differences in productivities are identical, but all values are higher by 1.399:
r1 = 2.999, r2 = 2.699, r3 = 2.499. Fig. 2 G and H shows a game with 6
players. The productivity values are distributed as in Fig. 2 D–F, in the sense that
for each player in the three-player game, there are two identical players in the
six-player game: r1 = r2 = 2.999, r3 = r4 = 2.699, r5 = r6 = 2.499. In

Fig. 2I, we show the value of e∗max/e∗min as a measure of inequality for groups
of various sizes. In each case, one third of players has productivity 2.7, one third
has productivity 1.5, and one third has productivity 1.1.

Fig. 3 analyzes a three-player game with productivities r1 = 2.7, r2 =
1.5, r3 = 1.1. In Fig. 3C, we report the efficiency-maximizing endowment
distribution for � = 0.3. In Fig. 3F, we report evolutionary simulations for the
same three-player game with the selection strength s = 1,000.

Fig. 4 presents data from evolutionary simulations of a two-player game.
Here, players can either contribute their entire endowment ei or defect by
contributing 0 to the public good. In Fig. 4 A–C we report results for a symmetric
two-player game with productivities r1 = r2 = 1.6. Fig. 4A depicts the maximal
welfare for each value of the error rate " from 0 to 0.1 for varying endowments.
Selection strength is set to s =1,000. Three points on the curve are highlighted:
" = 0.001, " = 0.019, and " = 0.1. The point " = 0.019 is where the
function attains its maximum, while the other two values are chosen arbitrarily
for comparison. For these three values of ", Fig. 4B shows the welfare achieved
for all possible endowment distributions, still with s = 1,000. In this symmetric
game, welfare is always maximized by e = (0.5, 0.5). Finally, in Fig. 4C, " is
held constant at 0.019 while three different values of the selection strength s
are shown for comparison. Fig. 4 D–F follow the same pattern, except that
productivities are unequal and set to r1 = 1.3, r2 = 1.9. In Fig. 4D, the
maximum is attained at " = 0.043. The same parameter values are used in SI
Appendix Figs. S1–S3.

Data, Materials, and Software Availability. Figures are based on simulation
averages over many independent runs of the respective simulation. Results were
analyzed and visualized with Python and Matlab R2023a. The computer code
is published in (65). All other data are included in the manuscript and/or SI
Appendix.
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