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Abstract

Biological and social scientists have long been interested in understanding how to reconcile

individual and collective interests in the iterated Prisoner’s Dilemma. Many effective strate-

gies have been proposed, and they are often categorized into one of two classes, ‘partners’

and ‘rivals.’ More recently, another class, ‘friendly rivals,’ has been identified in longer-mem-

ory strategy spaces. Friendly rivals qualify as both partners and rivals: They fully cooperate

with themselves, like partners, but never allow their co-players to earn higher payoffs, like

rivals. Although they have appealing theoretical properties, it is unclear whether they would

emerge in an evolving population because most previous works focus on the memory-one

strategy space, where no friendly rival strategy exists. To investigate this issue, we have

conducted evolutionary simulations in well-mixed and group-structured populations and

compared the evolutionary dynamics between memory-one and longer-memory strategy

spaces. In a well-mixed population, the memory length does not make a major difference,

and the key factors are the population size and the benefit of cooperation. Friendly rivals

play a minor role because being a partner or a rival is often good enough in a given environ-

ment. It is in a group-structured population that memory length makes a stark difference:

When longer-memory strategies are available, friendly rivals become dominant, and the

cooperation level nearly reaches a maximum, even when the benefit of cooperation is so

low that cooperation would not be achieved in a well-mixed population. This result highlights

the important interaction between group structure and memory lengths that drive the evolu-

tion of cooperation.

Author summary

In the evolution of cooperation, to what extent is cognitive capacity essential? The social

brain hypothesis argued that the brain size of primates has increased with the social group

size to manage complex social interactions, e.g., to reciprocate cooperation and punish

free riders. On the other hand, in the study of the repeated Prisoner’s Dilemma, it has

been shown that simple strategies that remember only the previous round can unilaterally

control the payoffs even against more sophisticated strategies having longer memories.

Thus, it is not straightforward to answer the question of how the evolution of cooperation
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changes when players are accessible to more elaborate memory-demanding strategies.

This paper studies this question through evolutionary simulations and found that longer

memory strategies substantially change the picture when the population has an internal

structure. This study thus suggests the joint impact between cognitive capacity and the

population structure in the evolution of cooperation, although these have often been stud-

ied independently.

Introduction

A game describes interactions among agents that are governed by a set of rules to specify each

agent’s possible moves and the resulting outcome from the combination of moves [1]. A wide

range of social and biological phenomena are thus covered by the theory of games. A successful

strategy in a game can often be constructed by requiring certain reasonable properties in a

top-down manner. Then the question is whether natural selection can achieve the same goal in

a bottom-up way. Sometimes the answer is straightforward: For a symmetric two-person

game, if a symmetric strategy profile (x, x) is the unique strict Nash equilibrium, x is evolution-

arily stable, and replicator dynamics will converge there. However, this would be the case for

relatively simple games. If we can construct a weak Nash equilibrium at best, keeping the evo-

lutionary trajectory close to the equilibrium will be hard. Or, the evolutionary path can be

highly nontrivial when the system has multiple equilibria.

Let us consider the iterated Prisoner’s Dilemma (IPD) game. It has long been investigated

to deepen our understanding of direct reciprocity, one of the fundamental mechanisms to sus-

tain cooperation by means of repeated interactions. Still, the idea that a nontrivial strategy can

be derived mathematically by imposing a few requirements is relatively recent: A major break-

through was the discovery of zero-determinant (ZD) strategies [2], each of which is made to

unilaterally enforce a linear relationship between long-term payoffs regardless of the co-play-

er’s strategy. An interesting subclass of the ZD strategies consists of ‘extortioners,’ which guar-

antee that the player’s long-term payoff grows more than the co-player’s. However, such

extortionate strategies are not favored by selection unless the population size is small enough

because they exploit each other so heavily [3, 4]. In contrast, generous ZD strategies make the

co-player’s payoff higher until mutual cooperation is reached. Those strategies are fairly suc-

cessful in evolving populations, especially when the mutation rate is moderately high [5]. More

importantly, the discovery of ZD strategies has considerably altered our viewpoint on strategic

analysis: Recall that a player’s payoff depends not only on his or her own strategy but also on

the co-player’s by the very definition of a game. ZD strategies, on the other hand, enforce

restrictions on the payoffs independently of the co-player’s strategy and induce an ultimatum

on the co-player. The restriction imposed by the strategy is its own invariant properties that

can be analyzed, modified, and even designed a priori in terms of long-term payoffs.

According to this viewpoint, many well-known strategies are categorized into a couple of

classes. Fig 1a shows a schematic diagram of the strategy space, in which generous strategies

are overall placed on the left whereas more strict strategies are on the right. First, we have “effi-

cient” strategies, which are depicted as the blue area on the left of the figure. This class is also

called “self-cooperators” because each of its member strategies maintains full cooperation

when it is used by both players even in the presence of implementation errors [6]. Fig 1b

shows the two players’ payoffs, and the blue dot indicates their payoffs when they adopt an effi-

cient strategy. For instance, Win-Stay-Lose-Shift (WSLS) players can recover cooperation

from erroneous defection, so WSLS is efficient. By contrast, Tit-For-Tat (TFT) players fall into
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a series of retaliation after a mistake, so TFT is not efficient. The “partners” constitute a subset

of efficient strategies, depicted as the area surrounded by the dashed blue square. The partners

are also denoted as “good” [7, 8], and all the memory-one partner strategies have been identi-

fied [5, 8]. When one of the players, say, Alice, uses a partner strategy, her co-player Bob can-

not obtain a payoff greater than the payoff from mutual cooperation, no matter which strategy

he takes. It means that Alice unilaterally restricts their payoffs to the shaded area shown in Fig

1c. One of Bob’s best responses is taking the same strategy as Alice’s to reach full cooperation,

which forms a cooperative Nash equilibrium. The other class, rivals, also called “unbeatable”

[9] or “defensible,” [10] is shown as the red area in Fig 1a. If Alice plays a rival strategy, she

never allows her co-player Bob to get a higher payoff than Alice’s irrespective of his strategy,

thus unilaterally restricting the possible payoff to the shaded area in Fig 1e. This class includes

AllD, TFT, and the extortionate ZD strategies.

Based on the above two classes, we can now introduce the idea of friendly rival (FR) strate-

gies [10–14]. These strategies qualify both as partners and as rivals simultaneously, which is

indicated as the intersection of partners and rivals in Fig 1a. It achieves full cooperation against

itself, and it never allows a lower payoff than the co-player’s, as shown in Fig 1d. In this sense,

one may regard FRs as the most strict partners, or as self-cooperative rivals. It is straightfor-

ward to show that FR strategies are evolutionary robust [5] for any benefit-to-cost ratio and

any population size [12]. It has been demonstrated by an evolutionary simulation that one

example of FR strategies, called CAPRI, outperforms memory-one strategies overwhelmingly

[12]. CAPRI is a pure strategy that behaves like Grim Trigger against most other strategies

while it forms full cooperation with itself even under implementation errors. Thus, it is hard

for a mutant to invade the community of CAPRI. Nevertheless, the role of FR strategies in the

evolution of cooperation remains unclear. FR strategies exist only when memory length is

Fig 1. A schematic diagram of the strategy space. (a) A schematic diagram of some important strategies showing the four classes of strategies,

efficient, partner, friendly rival, and rival strategies. Strategies that tend to cooperate (defect) are shown on the left (right). The bottom panels (b-e) show

accessible regions in the payoff space. Each blue dot in (b-d) represents the pair of payoffs when both players use a strategy belonging to the given class.

The areas shaded in orange in (c-e) indicate possible payoffs when one of the players, A, uses a strategy in the class. The intersection of partners and

rivals, indicated by the purple area in (a), defines friendly rivals.

https://doi.org/10.1371/journal.pcbi.1011228.g001
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m = 2 or longer [11], whereas previous studies on longer-memory strategies are relatively lim-

ited [15–17] compared to those on the memory-1 strategy space [3–6, 18–26]. Because of the

conflicting requirements, FR strategies are quite rare in the longer-memory strategy spaces:

the fractions of FR strategies are 1.2 × 10−4 and 3.8 × 10−7 among memory-2 and memory-3

pure strategies, respectively. Whether these tiny fractions of FR strategies seriously impact the

evolutionary dynamics of cooperation is nontrivial.

According to a recent understanding [24], partners are typically selected when the popula-

tion size N and the benefit of the cooperation b are large, resulting in cooperative states. On

the other hand, when N or b is small, a player has a better chance of survival by being spiteful

to others [27], which lowers the cooperation level. Therefore, we speculate that the selection of

FR strategies is more prominent in an environment where both large- and small-population

effects are simultaneously present. In this paper, we consider a group-structured population in

addition to the standard well-mixed population of size N. In a group-structured population,

players are divided into groups and play the IPD game with their in-group members while

occasionally imitating strategies of out-group members. The evolutionary dynamics among

memory-one strategies in a group-structured population have been studied in detail [28]. We

speculate that the group structure plays a more critical role as the memory length increases

because FR strategies become available.

In a broader context, we study an interplay among different mechanisms of cooperation

[29]. Whereas traditional approaches have focused on characterizing each single mechanism,

human cooperation is often ensured by multiple mechanisms working simultaneously, and

their interactions are becoming an active area of research. For instance, the joint effect of direct

reciprocity and structured populations has been studied intensively [19, 22, 28, 30, 31], and a

model unifying direct and indirect reciprocity was proposed [32]. Group structure, in particu-

lar, is known to contribute to the emergence of reputation-based norms [33], fairness [34],

and kinship structure [35, 36]. This study aims to add another finding to the literature by

showing that the underlying tension between inter- and intra-group dynamics induced by the

group structure can guide the evolutionary trajectory of direct reciprocity toward the tiny

intersection between partners and rivals.

In this paper, we will conduct Monte Carlo simulations of evolutionary dynamics to see the

roles of FR strategies in the evolution of cooperation. Specifically, we compare the evolutionary

dynamics within the memory-one and memory-three pure-strategy spaces, whose cardinalities

are 24 = 16 and 264� 1019, respectively. (In SI, we show the results for the memory-two strat-

egy space and demonstrate that the results are qualitatively similar to those for the memory-

three strategy space. Thus, we focus on the difference between the memory-one and memory-

three strategy spaces in the main text.) We will see that a stark difference is observed in the

group-structured population and that cooperation approaches the theoretical optimum

because of the FR strategies even when the benefit of cooperation is low.

Model

Evolutionary dynamics

In this paper, we study the donation game, a special form of the Prisoner’s Dilemma (PD)

between strategic complementarity and substitutability [37], where the gain from unilateral

defection and the loss from unilateral cooperation coincides [38–41]. Its payoff matrix is

defined as follows:

b � 1 � 1

b 0

 !

; ð1Þ
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where the benefit and the cost of the donation are b and 1, respectively. We have normalized

the cost of cooperation to 1 without loss of generality. When a donor cooperates, they pay a

unit amount of cost, and the co-player gets the benefit of b> 1, whereas nothing happens

when the donor defects. The benefit of cooperation b is the parameter that controls the

strength of the social dilemma. The smaller b is, the more severe the dilemma is. We consider

the repeated donation game without discounting the future. Players take unintended actions

in each round of the donation game with a small probability e(> 0) because of implementation

errors. The long-term payoff of player X against player Y is defined as the average over infi-

nitely many rounds:

pXY ¼ lim
T!1

1

T

XT

t¼1

p
ðtÞ
XY ; ð2Þ

where p
ðtÞ
XY is X’s payoff against Y in round t. When both strategies have finite memory lengths,

the sequence of moves is described as a Markov chain. The long-term payoff always converges

to a unique stationary value πXY and can be calculated by a linear-algebraic calculation. (See

Methods for details.)

Players’ strategies are updated according to evolutionary dynamics at a longer time scale.

Here, we study two types of populations: one is well-mixed, and the other is structured in

groups. The well-mixed population, the most standard model in the literature, assumes that

each player plays the game with everyone else in the population equally likely. On the other

hand, the group-structured population assumes an internal structure in the population so that

players play the game only with in-group members while they may imitate out-group members

as well. The well-mixed population is a particular case of the group-structured one, so we

describe the latter in detail below.

We consider a population of size NM, which is subdivided into M groups of size N as

shown in Fig 2. Each player plays the repeated game with the other N − 1 players in the same

group. The fitness of a player X is defined as the average of the long-term payoffs against all the

other players in the group:

pX ¼
1

N � 1

X

Y2GX

pXY ; ð3Þ

where GX is the set of the other players in the same group.

Suppose that a player currently uses strategy X. This focal player is then given a chance to

adapt its strategy through either intra-group imitation (with probability μin), out-group

Fig 2. Evolution in the group-structured population. A schematic diagram of the group-structured population. In this example, the population is

divided into M = 4 groups of size N = 3. (a) The players in the same group play the game with each other. A player’s fitness is determined from the

interactions that he or she has been involved in. Each player’s strategy is updated by (b) intra-group imitation, (c) out-group imitation, and (d)

mutation.

https://doi.org/10.1371/journal.pcbi.1011228.g002
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imitation (with probability μout), or mutation (with probability ν), where μin + μout + ν = 1. In

the case of intra-group imitation, the focal player randomly chooses another player in the

group as a role model. If the role model has adopted strategy Y, the focal player switches to Y
with probability given by the Fermi function

f inX!Y ¼
1

1þ exp½sinðpX � pYÞ�
; ð4Þ

where σin represents the selection strength of intra-group imitation, and πX and πY are the fit-

nesses of the focal and the model players, respectively.

Out-group imitation occurs in a similar way. The focal player randomly chooses a role

model from the other groups with equal probability. If the role model uses strategy Y, the focal

player adopts the strategy with probability

f outX!Y ¼
1

1þ exp½soutðpX � pYÞ�
; ð5Þ

where σout is the selection strength for out-group imitation. Note that the focal player and the

role model are now in different groups so that they do not directly play the game with each

other, and this is one of the key differences from a model without group structure. Still, out-

group imitation allows strategies to spread from one group to another, just as migration does

in genetic evolution models. Finally, when the focal player changes his or her strategy through

mutation, the player replaces the current strategy X with Y that is randomly sampled from a

given strategy space (see below). This group-structured population reduces to the standard

well-mixed one when M = 1 and μout = 0.

In the following, we assume that intra-group dynamics is faster than both out-group imita-

tion and mutation, whereas the latter two processes have similar time scales, i.e., μout� μin

and ν� μin. In this limit, each group contains two strategies at most: When a new strategy X
appears in a group of resident players with Y through either mutation or inter-group imitation,

no other mutant strategies will appear until Y takes over the whole group or dies out. The fixa-

tion probability of a Y-individual in a group of X is then given as [28]

rX!Y ¼

�
PN� 1

j¼0
exp sinj

ð2N � j � 3ÞpXX þ ðjþ 1ÞpXY � ð2N � j � 1ÞpYX � ðj � 1ÞpYY

2ðN � 1Þ

� ��� 1

: ð6Þ

Therefore, the probability for a group of X to change its strategy to Y via out-group imitation

is given as follows:

TX!Y ¼ f outX!YrX!Y : ð7Þ

Let us define relative mutation probability as r� ν/(μout + ν), which denotes the frequency of

mutation relative to that of out-group imitation. We will see in Results that the ratio between

μout and ν plays a pivotal role in determining an evolutionary trajectory. For completeness, we

show the results for an alternative model where the time scales for mutations and out-group

imitations are completely separated, i.e., ν� μout, in S1 Appendix.

Now we are ready to simulate the time evolution of our model (see Methods for more

details). We begin by preparing an initial state with randomly sampled M strategies, one for

each group. We define the event of either a mutant or a resident taking over a group as the

unit of time. At each time step, we randomly pick a focal group using X among M groups.

Out-group imitation occurs with probability 1 − r: Out of the other M − 1 groups, we choose

one of them, say, using Y. The focal group adopts Y with probability TX!Y. Or, a mutation

event occurs with probability r, so a mutant strategy Y takes over the focal group with
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probability ρX!Y. The detailed procedure to sample mutants will be explained in the next sec-

tion. This completes a one-time step, and these steps are repeated until we obtain enough

statistics.

Memory lengths of strategies

Although it is common to define the memory length of a strategy by a single integer, here

we define it as a pair of integers (m1, m2) to characterize the strategy space in more detail. A

memory-(m1, m2) strategy prescribes an action based on its own moves over the last m1

rounds and its co-player’s moves over the last m2 rounds. For instance, TFT prescribes its

action based only on the last move taken by the co-player, so its memory is represented as

(m1, m2) = (0, 1). So-called “reactive memory-one” strategies belong to this category. As

another example, unconditional strategies such as AllC and AllD have (m1, m2) = (0, 0).

The set of reactive strategies contains unconditional strategies as a subset. However, when

we categorize a given strategy in the following, we use the smallest memory length neces-

sary to represent the behavior. For instance, the unconditional strategies belong to the

memory-(0, 0) class but not the memory-(0, 1) class. In other words, the set of memory-(0,

1) strategies and the set of memory-(0, 0) strategies are disjoint. See Fig 3a for more

examples.

Let S(m1, m2) denote the set of strategies that have memory-(m1, m2). The memory-m strat-

egy space SðmÞ is defined as the set of the strategies satisfying m1�m and m2�m, i.e.,

SðmÞ �
Sm

m1¼0

Sm
m2¼0

Sðm1;m2Þ. The size of memory-m strategy space jSðmÞj equals 222m

because a strategy prescribes either C or D for each of 22m possible memory states. The number

of strategies that have exactly memory-(m1, m2) is obtained by excluding shorter-memory

strategies as

jSðm1;m2Þj ¼ 22ðm1þm2Þ

� 2� 22ðm1þm2 � 1Þ

þ 22ðm1þm2 � 2Þ

: ð8Þ

The number of pure strategies for each memory-length pair is shown in Fig 3a. As in Eq (8)

and Fig 3a, the number of strategies increases super-exponentially as (m1 + m2) grows. If we

uniformly sample a strategy from SðmÞ, strategies with small memory lengths will not appear.

For this reason, in order to consider interactions among strategies with different memory

lengths, we simulate mutation by using the following two-step process:

( Step 1 : Sample two independent random numbers m1 and m2 uniformly from ½0;m�:

Step 2 : A strategy is uniformly sampled from Sðm1;m2Þ:
ð9Þ

This scheme allows us to sample shorter-memory strategies such as AllD, AllC, and TFT with

non-negligible probabilities. Furthermore, the average memory lengths would be (m/2, m/2)

under neutral selection.

Efficient, rival, and FR strategies are distributed disproportionately in the strategy space.

Fig 3b–3d show the fractions of efficient, rival, and FR strategies relative to the whole number

of memory-(m1, m2) strategies (see Methods for more details). According to Fig 3b and 3c, the

fractions of efficient and rival strategies tend to decrease as m1 or m2 increases, although the

decreasing trend is milder for efficient strategies. Fig 3d shows that FRs are far rarer than effi-

cient or rival strategies: They exist only when (m1 + m2)� 4, and the fraction goes down to

4 × 10−7 in S(3, 3). Thus, the chance of finding an FR strategy through random search is negli-

gibly small.
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Results

Evolution in well-mixed populations

First, we show Monte Carlo results for well-mixed populations in Fig 4. The upper panels (a-d)

are the results for Sð1Þ, whereas the lower panels (e-h) are for Sð3Þ. As shown in the figure,

both Sð1Þ and Sð3Þ show qualitatively similar behavior: When b and N are high, the coopera-

tion level is high, and the population primarily consists of non-FR efficient strategies with few

rivals. By contrast, when b or N is small, non-FR rivals occupy most of the population, lower-

ing the cooperation level. One might find it puzzling that memory length is almost irrelevant

despite the presence of FRs in Sð3Þ. However, as shown in Fig 4h, FRs actually occupy only a

small fraction of O(10−3). Although significantly greater than expected from neutral selection,

Fig 3. Numbers of the strategies in each class. (a) The numbers of pure memory-(m1, m2) strategies according to Eq (8). Some well-known strategies

in each class are also shown. (b-d) The fractions of efficient, rival, and FR strategies in each memory-length pair. For instance, there are 10 memory-(1,

1) strategies in total. Among them, 20% are efficient strategies, other 20% are rival strategies, and no FRs exist. These fractions are independent of the

benefit and the cost of cooperation.

https://doi.org/10.1371/journal.pcbi.1011228.g003

Fig 4. Evolutionary simulations for the well-mixed populations. The panels on top (a-d) and bottom (e-h) show the results for Sð1Þ and Sð3Þ,
respectively. From left to right, (a,e) the cooperation levels, (b,f) the fractions of non-FR efficient strategies, (c,g) those of non-FR rival strategies, and (d,

h) those of FR strategies are shown as functions of the population size N. Throughout this figure, the error probability is e = 10−6, and the intra-group

selection strength is σin = 30/(b − 1), where the denominator has been introduced to make the typical time scale comparable between different values of

b. Each data point is averaged over time and over 10 independent runs, after discarding the first initialization period. See Methods for further details.

https://doi.org/10.1371/journal.pcbi.1011228.g004
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it is still a negligible fraction compared with non-FR efficient or rival strategies, indicating that

FRs play a marginal role in a well-mixed population.

This result shows that cooperation is still challenging for b = 1.5 even with Sð3Þ. Although

FRs are evolutionarily robust even for b = 1.5, other strategies can still replace FRs via neutral

drift. In other words, FRs are not successful enough to compensate for their small numbers in

Sð3Þ. The same argument also applies to All-or-Nothing-3 (AON3) strategy [17]. AON3 is a

memory-3 strategy that forms a subgame perfect equilibrium for b/c> 4/3. While Sð3Þ con-

tains FRs and AON3, it also contains other strategies that can replace them.

One might wonder why the cooperation level for Sð1Þ is higher than that for Sð3Þ when b
and N are high. For instance, when b = 6 and N = 8, the cooperation level is approximately 1

for Sð1Þ while it is around 0.8 for Sð3Þ. This unusually high cooperation level for Sð1Þ is not

because WSLS is exceptional but because there is no dangerous mutant that can threaten

WSLS in Sð1Þ. In Sð1Þ, the strategies that can exploit WSLS have low cooperation levels

against themselves [28]. However, in Sð3Þ, some strategies, such as CAPRI, can exploit WSLS

while having high self-cooperation levels. We confirmed by simulations that WSLS is replaced

more easily when we add mutants from Sð3Þ.
Typical time series for these simulations are shown in Fig 5. When we choose Sð1Þ and

b = 6, the population adopts WSLS throughout the observation period as expected. For Sð3Þ,
efficient strategies are again the majority for most of the time, although we observe frequent

turnovers. If the benefit is low (b = 1.5), on the other hand, non-FR rival strategies are the

majority for both Sð1Þ and Sð3Þ. One noticeable difference in the latter case is the occasional

surges of FR strategies, but they do not last long.

Evolution in a group-structured population

Next, we show Monte Carlo results for a group-structured population of group size N = 2 and

the number of groups M = 103. Fig 6 shows the cooperation level, together with the fractions

of strategies categorized into non-FR efficient, non-FR rival, and FR strategies, where the hori-

zontal axis is the relative mutation rate r. In Sð1Þ, as shown in Fig 6a–6d, efficient strategies

(typically WSLS) and rivals coexist, so the cooperation level is intermediate. This coexistence is

observed in a broad range of r and insensitive to b, as reported previously [28].

If we consider Sð3Þ, the cooperation level is close to 100% [Fig 6e–6h]. The results again

show little dependence on b, so a high degree of cooperation is possible even with low b. While

the cooperation level remains high in a broad range of r, the fractions of strategies show non-

trivial dependence on r: When the relative mutation rate r is higher than O(10−3), which is the

order of O(1/M), the population is mainly composed of FRs, whereas non-FR efficient strate-

gies replace them as r decreases. When out-group imitation occurs less frequently with small

σout = 3/(b − 1), the pattern changes to some extent in that non-FR rivals are more favored

than non-FR efficient strategies for low r [Fig 6i–6l]. Nevertheless, FRs are always the most

prevalent as long as r is higher than O(10−3). In other words, a high mutation rate helps to pro-

mote cooperative behavior supported by FRs.

Typical time series in a group-structured population are shown in Fig 7. For Sð1Þ, non-FR

efficient strategies such as WSLS and non-FR rival strategies stably coexist as shown in Fig 7a.

This is because of the conflicting requirements between in-group and out-group selection: In-

group selection favors a rival to take over the group, whereas efficiency is more important in

out-group selection for a strategy to spread across different groups. Fig 8a illustrates what typi-

cally happens between WSLS and AllD. Because WSLS is an efficient strategy with a higher

payoff, WSLS is more likely to be imitated by AllD players via out-group imitations. However,

the newly appeared WSLS player cannot spread in the group because WSLS is weak against

PLOS COMPUTATIONAL BIOLOGY Grouping promotes both partnership and rivalry

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011228 June 20, 2023 9 / 23

https://doi.org/10.1371/journal.pcbi.1011228


AllD within the group. The result is that efficient strategies keep wandering among groups and

failing to conquer any of them. Note that both large- and small-N effects can thus be experi-

enced in this group-structured population.

As soon as FRs become available in Sð3Þ, they can survive both the in-group and out-group

dynamics. Fig 8b illustrates a typical competition between an FR strategy and AllD. Because of

the efficiency of the FR strategy, they are more likely to be imitated by AllD players via out-

group imitations. The newly appeared FR player is also good at the intra-group selection

because of its rivalry. Thus, it can take over the group and eventually the entire population.

Once they enter the system, they are stable for a long time, as shown in Fig 7b. If residents

have adopted an FR strategy, their evolutionary robustness assures that no mutant strategy has

a fixation probability greater than 1/(NM). The greatest threat is a neutral drift process caused

by non-FR efficient strategies cooperating with the residents. For instance, while CAPRI has a

strictly higher payoff when pitted against AllC or WSLS, there are some non-FR efficient strat-

egies that tie with CAPRI in Sð3Þ. These efficient strategies can thus replace FRs via nearly

neutral drift. Indeed, Fig 7b shows that efficient strategies coexist with FRs to some extent

while the rivals are almost entirely suppressed.

Fig 5. Time series for the well-mixed populations. Typical time series of the fractions of the non-FR efficient, non-FR rival, and FR strategies in the

well-mixed populations. The top and bottom panels show the results for Sð1Þ and Sð3Þ, respectively. The population size is N = 64, and the other

simulation parameters are the same as in Fig 4. For the sake of better visualization, each time series plots every thousandth data point.

https://doi.org/10.1371/journal.pcbi.1011228.g005
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The above argument also explains why a higher mutation rate stabilizes cooperation formed

by FRs: it introduces rivals into the population, by which potentially threatening efficient strat-

egies can be driven out. Fig 7c shows an example of time series in a group-structured popula-

tion when r is low. In the first half of this time series, an FR strategy occupies the majority,

Fig 6. Evolutionary simulations for the group-structured populations. The number of groups is M = 103, and each group has N = 2. The panels on

top (a-d) and middle (e-h) show the results for Sð1Þ and Sð3Þ, respectively. The selection strength for out-group imitation is σout 30/(b − 1). In the

bottom panels (i-l), we show the results for Sð3Þ with a weaker out-group selection strength σout 3/(b − 1). From left to right, cooperation levels and the

fractions of non-FR efficient strategies, non-FR rival strategies, and FR strategies are shown as functions of the relative mutation probability r. The error

probability is e = 10−6. Each data point has been obtained by averaging the results over 102 independent runs.

https://doi.org/10.1371/journal.pcbi.1011228.g006

Fig 7. Time series for the group-structured populations. Typical time series showing the fractions of non-FR efficient, non-FR rival, and FR

strategies. (a,b) Sð1Þ and Sð3Þ when the relative mutation probability is high (r = 10−2). (c) An example of time series for Sð3Þ with a low relative

mutation probability (r = 10−4), in which a non-FR efficient strategy replaces an FR strategy. The benefit of cooperation is b = 3, and the out-group

selection strength is σout = 15. The other simulation parameters are the same as in Fig 6. For the sake of better visualization, each time series plots every

millionth data point.

https://doi.org/10.1371/journal.pcbi.1011228.g007
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although it is invaded a few times by non-FR efficient strategies. At t� 3.5 × 108, the FR strat-

egy is replaced by an efficient one and thus wiped out from the population. Once this happens,

the system is not as stable as in the first half, and we see rivals begin to rise. Because FRs are so

rare, it will take a long time for another FR strategy to appear and settle down the situation.

For FRs to survive long, therefore, r needs to be high enough to suppress non-FR efficient

strategies. Specifically, a rough guess would be that r has to be greater than the fixation proba-

bility* 1/M [28] that non-FR efficient strategies replace FRs through neutral selection. In S1

Appendix, we show the simulation results for M = 100. We find a crossover at the relative

mutation rate r* O(1/M), which is consistent with the above argument.

Evolution of memory lengths

Finally, let us check how the memory lengths of strategies evolve. We measured the memory

lengths (m1, m2) of the resident strategy in each group and averaged these over the groups and

over time. Fig 9 shows average memory lengths in well-mixed and group-structured popula-

tions. We have already seen that the evolutionary process depends on b and N in a well-mixed

population. When the cooperation level is low, rivals with shorter memory lengths are the

majority. More specifically, when N or b is low, the memory lengths are shorter than expected

from the neutral case of m1 = m2 = 1.5. The opposite is true when N and b are high because the

memory lengths become longer than the baseline. This observation is consistent with Fig 3b

and 3c, which shows that rivals are easily found when memory lengths are small, compared

with efficient strategies. A similar trend is also observed for a group-structured population

[Fig 9b]: The cooperation level is positively correlated with the average memory lengths. The

tendency is particularly striking when m2 approaches three as r increases. More interestingly,

there is a notable difference between m1 and m2: We observe m2 >m1, which implies that FRs

tend to memorize the opponent’s history better than their own history of moves. It is also con-

sistent with Fig 3d, according to which a greater number of FRs exist when m2 >m1.

Fig 8. Typical transitions in the group-structured populations. (a) For Sð1Þ, WSLS and AllD often coexist in the population. An AllD player switches

to WSLS via out-group imitation as WSLS players have higher payoffs. However, the newly appeared WSLS player is weak against AllD within the

group, and it is almost surely replaced by AllD. Thus, the coexistence lasts for a long time. (b) For Sð3Þ, a different scenario is observed for FR strategies.

After an AllD player switches to FR via out-group imitation, the FR player can resist AllD within the group. In this way, FRs can take over the entire

population.

https://doi.org/10.1371/journal.pcbi.1011228.g008

PLOS COMPUTATIONAL BIOLOGY Grouping promotes both partnership and rivalry

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011228 June 20, 2023 12 / 23

https://doi.org/10.1371/journal.pcbi.1011228.g008
https://doi.org/10.1371/journal.pcbi.1011228


Summary and discussion

In this paper, we have studied the evolutionary dynamics of well-mixed and group-structured

populations in memory-1 and memory-3 strategy spaces. Our result demonstrates that group

structure is an essential factor in manifesting the effects of memory. In group-structured popu-

lations, a strategy must succeed in both in-group and out-group selection processes, but their

requirements are conflicting: In-group selection requires a strategy not to be beaten by its co-

players, whereas out-group selection favors self-cooperative strategies. Since these conflicting

demands for survival can be accommodated only by FRs, a group-structured population leads

to a drastically different evolutionary consequence between Sð1Þ and Sð3Þ. Namely, when

only Sð1Þ is available, we see stable coexistence between WSLS and AllD (or GRIM) irrespec-

tive of b, which is consistent with our previous study [28]. When the strategy space expands to

Sð3Þ, by contrast, FRs prevail at r ≳ O(1/M) with a cooperation level� 100% even for low b
(Fig 6). Whereas group structure has often been considered in the context of multilevel selec-

tion [42], our work proposes another use of it. An optimal condition for FRs is provided by

creating different selection pressure depending on whether competition occurs within a group

or between groups [43]. Once an FR strategy is adopted, the population plays a cooperative

Nash equilibrium [10] with evolutionary robustness [12], combining cooperation and compe-

tition in a productive way [44].

In a well-mixed population, memory makes few differences in evolutionary trajectories

whether we consider Sð1Þ or Sð3Þ: The cooperation level is high because of the proliferation of

efficient strategies when b and N are high, and rivals exhibit a low cooperation level otherwise,

as has been reported previously [4, 23]. Although Sð3Þ does contain FRs, they cease to play a

pivotal role in a well-mixed population because they are easily outnumbered either by efficient

strategies or by rivals depending on the environmental condition. Although FRs are observed

more frequently than expected from random sampling, it is not enough to compensate for

their small number, as shown in Fig 4h. Thus, it is hard to form cooperation in well-mixed

populations for low b, even when complex strategies using additional memory lengths are

available. By introducing group structure, we can see that nearly full cooperation is established

because of FRs in the longer-memory strategy space.

Fig 9. Evolution of the memory lengths. The average memory lengths (m1, m2) of the evolved strategies in Sð3Þ. (a) A well-mixed population and (b) a

group-structured one show different behavior. The baselines m1 = m2 = 3/2 are depicted as dotted horizontal lines. The simulation parameters are the

same as in Fig 6 unless otherwise mentioned. We used b = 3 in (b).

https://doi.org/10.1371/journal.pcbi.1011228.g009
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Interestingly, a high relative mutation rate r contributes to the stability of FRs [Fig 7b],

which may look strange because they would be challenged by mutants frequently. The reason

is that frequent mutation suppresses non-FR efficient strategies, which could potentially

replace FRs via neutral drift. FRs are invulnerable to various mutants, while non-FR strategies

are often weak against some mutants. This invulnerability makes FRs more advantageous

when diverse mutants may appear. The mutation rate r ≳ O(10−2) for which FRs are selected

might look unusually high, but we note that r is the relative frequency compared to the inter-

group imitation events. Also, note that cultural transmission experiences more frequent

explorative “mutation” than those assumed in biological models [45, 46]. We could even argue

that a large amount of uncertainty may arise when someone tries to learn a strategy by obser-

vation, which could also result in a high effective mutation rate [25].

We consider that these results for the group-structured population are robust regardless of

the model details. First, the results for Sð2Þ are qualitatively similar to those for Sð3Þ, as shown

in Fig A in SI. As expected, the key difference arises whether the strategy space contains FR

strategies or not. Second, the results are insensitive to the benefit-to-cost ratio as shown in Fig

6, because the win-lose relationship between strategies is the decisive factor [28]. Although

only the donation games are studied in this paper, we believe that the results would be similar

for general PD games. This is because whether a strategy is an FR or not is independent of the

elementary payoff matrix [12] as long as mutual cooperation is socially optimal (2R> T + S).

Third, while we study the pairwise imitation process in this study, we expect that similar results

would be obtained for other strategy updating rules such as the birth-death process. FRs are

selected because of the selection pressures imposed by in-group and out-group competitions.

These advantages of FR strategies are independent of the strategy updating rule. Overall, we

expect the evolutionary consequences would be similar as long as the population has a group

structure.

A possible model extension for future studies is the introduction of mixed strategies. FR

strategies have measure zero in the mixed-strategy space because some prescriptions must be

deterministic. For instance, C must be played at mutual cooperation to be a partner and D
must be played at mutual defection to be a rival. Thus, it is hard to find FR strategies among

mixed strategies. However, we still surmise that strategies that are close to FRs in the mixed-

strategy space would be selected in a group-structured population although how to character-

ize the closeness to FRs remains a challenge. Another interesting model extension is the intro-

duction of a “gradual” mutation to the model. We draw a mutant from the strategy space

independently of the resident species in this study. For instance, a memory-3 mutant may sud-

denly appear in an AllD community. It could be more realistic to assume that a mutant is close

to the resident species. Such a restriction on mutant strategies can alter the evolutionary

dynamics [47] and would allow us to study the evolutionary path.

Even if group structure provides a favorable environment for FRs, one of the natural ques-

tions left in this study is how such structure emerges in the first place. It could be a matter of

biology as is the case of Dictyostelium discoideum [48], but it can also be spontaneously

induced by co-evolutionary network dynamics of interacting agents playing the PD game [49,

50]. The generality of this co-evolutionary mechanism implies that it can be ubiquitous across

many different scales in society. It would be an interesting future direction to investigate the

co-evolutionary dynamics of FRs and population structure.

We may think of FRs in terms of the emergence of other-regarding preference [51–54] in

the sense that selection can favor an FR that compares its own payoff with the other player’s.

The existence of other-regarding is an interesting question because, in classical game theory,

every player is assumed to care only about his or her own payoff. As we see in behavioral

experiments and everyday experiences, by contrast, people often manifest other-regarding
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preferences known as ‘inequity aversion’ [51, 55]. In our model, FR players express ‘disadvan-

tageous-inequity aversion’ in the sense that they never let their co-players have higher payoffs

whereas they do not care as long as their own payoffs are higher. Such a preference spontane-

ously emerges by playing FR strategies, while each player tries to increase his or her own payoff

through imitation [see Eqs (4) and (5)]. Another recent study [56] also shows that selection

favors learning rules that incorporate other-regarding preferences than selfish learning. These

findings may help to understand the origin of other-regarding preferences in human society.

Note also that the relation between other-regarding preference and group structure via FRs

differs from the conventional idea that associates social preference with group selection [57,

58]: In our model, groups do not compete directly as is often assumed in the group-selection

literature [42], and we do not view other-regarding preference as necessarily prosocial [59, 60],

especially when it takes the form of rivalry. It is worth noting that the other-regarding prefer-

ences for partnership and rivalry lead to a refinement of Nash equilibrium, which still makes

total sense among self-interested players.

Our study has also given theoretical predictions on the evolution of memory lengths. As

shown in Fig 3, rivals can work well with short memory lengths, whereas cooperation seems to

require a higher cognitive capacity. In particular, a large fraction of FRs exists when m2�m1

� 2, meaning that an FR player has to remember the co-player’s history better than his or her

own. For this reason, the average memory length tends to be low (high) in environmental con-

ditions where non-FR rivals (FRs) are favored. Recent studies of learning dynamics between

two players predict a ‘memory dilemma’ in the sense that cooperative strategies with long

memory lengths are invaded by simpler, less cooperative strategies [26, 61]. That is not incon-

sistent with our result, according to which rivalry will be favored in such a small population of

two players. So far, our observation seems to be in qualitative agreement with previous studies

that cooperative strategies with longer memory lengths will evolve [16, 17]. However, if we had

an even larger strategy space, whether the average memory length in use would keep increasing

[16, 62] is an open question. While there is a theoretical minimum memory length m = 2 to

construct FR strategies for the IPD [11], the density of FRs will become extremely low as the

memory length grows even longer [see Fig 3d]. If this trend continues, it is practically impossi-

ble to discover sophisticated FRs through random mutation from an even longer-memory

strategy space. Therefore, as far as a two-person game is considered, there seem to be few rea-

sons to go beyond m = 3. A recent experimental study also suggests that the optimal coopera-

tion level occurs when the memory length is around m = 2 [63]. On the other hand, long

memory may help to identify defectors [16], outperform a wide spectrum of strategies [12],

and even reduce the cognitive load by providing a simple generalization [13, 14, 64], although

such a complexity cost has not been incorporated in our model. Indeed, a previous simulation

study shows that memory length gets continuously longer without the cost of memory capacity

[16]. Testing these theoretical predictions and hypotheses with behavioral experiments will

deepen our understanding of how much cognitive capacity is required in direct reciprocity

[63, 65–70].

Methods

Calculation of long-term payoffs and cooperation levels

In general, strategies for the IPD need to define which action has to be taken after any history

of previous interactions. Among infinitely many possible strategies, we focus on those with

limited memory lengths. A well-known example is memory-one strategies, which condition

their decision on the previous round. The relevant set of history profiles is {CC, CD, DC, DD},

where the first and second letters refer to the focal player’s and the co-player’s last actions,
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respectively. Thus, a memory-one strategy can be represented as a 4-tuple,

p ¼ ðpCC; pCD; pDC; pDDÞ; ð10Þ

where pij represents the player’s cooperation probability for each given history profile (i, j)
from the previous round. We focus on deterministic strategies by setting pij to either zero or

one. The total number of memory-one deterministic strategies is therefore 24 = 16.

A player may defect despite the intention to cooperate with probability e� 1 and vice

versa. As a result, instead of the original strategy p, the player effectively plays ð1 � eÞpþ e�p,

where �p is a vector with elements �pij :¼ 1 � pij for i, j 2 {C, D}. When both players adopt

memory-one strategies, the game is represented as a Markov chain, from which one can

explicitly compute their payoffs and the cooperation levels. The states of this Markov chain are

the possible outcomes of each round. When the players’ (effective) strategies p = (pCC, pCD,

pDC, pDD) and q = (qCC, qCD, qDC, qDD) are given, the transition matrix T of the Markov chain

takes the following form:

T ¼

pCC � qCC pCC � �qCC �pCC � qCC �pCC � �qCC

pCD � qDC pCD � �qDC �pCD � qDC �pCD � �qDC

pDC � qCD pDC � �qCD �pDC � qCD �pDC � �qCD

pDD � qDD pDD � �qDD �pDD � qDD �pDD � �qDD

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

; ð11Þ

where �pij :¼ 1 � pij and �qij :¼ 1 � qij for i, j 2 {C, D}. If e> 0, according to the Theorem of

Perron-Frobenius, T has a unique invariant distribution v = (vCC, vCD, vDC, vDD). In particular,

the p-player’s average cooperation level is γp,q ≔ vCC+vCD whereas the q-player’s cooperation

level is γq,p ≔ vCC+vDC. Consequently, the p-player’s long-term average payoff is given by

pp;q ¼ b � gq;p � c � gp;q: ð12Þ

It is straightforward to extend this method to longer memory strategies. Memory-three strate-

gies determine their subsequent actions based on the previous three rounds of interaction. Let

us denote the relevant history profile by six letters separated by a comma, such as (a3a2a1,

b3b2b1), where at 2 {C, D} refers to what the focal player did t rounds before, and bt 2 {C, D}

means the co-player’s. For instance, a history profile (CCC, CCD) indicates that the focal player

continued cooperation over the last three rounds whereas the co-player defected in the previ-

ous round. A memory-three strategy prescribes an action for each of the 26 = 64 history pro-

files, so it is represented by a 64-tuple,

p ¼ ðpCCC;CCC; pCCC;CCD; . . . ; pDDD;DDDÞ; ð13Þ

where each element pa3a2a1;b3b2b1
represents the player’s cooperation probability for the given

history profile. Similarly to the memory-one case, we work with an effective strategy ð1 �

eÞpþ e�p in the presence of implementation error with probability e> 0. The repeated game

between p and q is now represented by a Markov chain of 64 states, and the transition
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probability from (a3a2a1, b3b2b1) to ða0
3
a0

2
a0

1
; b0

3
b0

2
b0

1
Þ is written as follows:

Tða3a2a1 ;b3b2b1Þ!ða03a0
2

a0
1
;b0

3
b0

2
b0

1
Þ

¼

0 if a0
3
6¼ a2 or a0

2
6¼ a1 or b0

3
6¼ b2 or b0

2
6¼ b1

pa3a2a1 ;b3b2b1
� qb3b2b1 ;a3a2a1

if ða0
3
a0

2
a0

1
; b0

3
b0

2
b0

1
Þ ¼ ða2a1C; b2b1CÞ

pa3a2a1 ;b3b2b1
� �qb3b2b1 ;a3a2a1

if ða0
3
a0

2
a0

1
; b0

3
b0

2
b0

1
Þ ¼ ða2a1C; b2b1DÞ

�pa3a2a1 ;b3b2b1
� qb3b2b1 ;a3a2a1

if ða0
3
a0

2
a0

1
; b0

3
b0

2
b0

1
Þ ¼ ða2a1D; b2b1CÞ

�pa3a2a1 ;b3b2b1
� �qb3b2b1 ;a3a2a1

if ða0
3
a0

2
a0

1
; b0

3
b0

2
b0

1
Þ ¼ ða2a1D; b2b1DÞ

:

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð14Þ

Again, as a non-negative, irreducible, and aperiodic matrix, T has a unique invariant distribu-

tion v, from which the cooperation level of the p-player is calculated as

gp;q :¼
X

a3 ;a2 ;b3 ;b2 ;b1

va3a2C;b3b2b1
: ð15Þ

Memory length of a strategy

As already mentioned, strategies of (m1, m2), where m1�m and m2�m, constitute the mem-

ory-m strategy space. It means that the set of memory-m strategies includes strategies with

shorter memory lengths as special cases. For instance, memory-one strategy space includes the

so-called reactive memory-one strategies that condition the action on the co-player’s previous

action but not on its own. These strategies have pCC = pDC and pCD = pDD in common, we can

say that m1 = 0 in this case. Similarly, those with pCC = pCD and pDC = pDD can be said to have

m2 = 0 because they are indifferent to the co-player’s history. If both m1 and m2 are zero, the

strategies unconditionally have pCC = pCD = pDC = pDD.

In general, we calculate (m1, m2) for a strategy represented by Eq (13) in the following way:

1. If there exists (a2, a1, b3, b2, b1) such that pCa2a1 ;b3b2b1
6¼ pDa2a1;b3b2b1

, it has m1 = 3.

2. Else if there exists (a1, b3, b2, b1) such that p∗Ca1 ;b3b2b1
6¼ p∗Da1 ;b3b2b1

, where * denotes a wild-

card, it has m1 = 2.

3. Else if there exists (b3, b2, b1) such that p∗∗C;b3b2b1
6¼ p∗∗D;b3b2b1

, it has m1 = 1.

4. Otherwise, m1 = 0.

A similar algorithm is used for calculating m2 as well.

Judging efficiency and rivalry

When a strategy p is given, it is straightforward to judge its efficiency: It is an efficient strategy

if lime!0 γp,p = 1. Numerically, we judge efficiency if γp,p for e = 10−4 is greater than 0.99. We

have confirmed that the judgment is not sensitive to the threshold value. Another way of

judgement is to use a graph-theoretical method [12], which checks probability currents with

adding transitions of probability O(ek) systematically (k = 0, 1, 2, . . .). We have compared the

linear-algebraic and graph-theoretical methods with various strategies and verified their con-

sistency. We also note that whether a strategy is a partner depends on b, whereas efficiency is

independent of b, the benefit of cooperation. This is one of the reasons why we mainly work

with efficiency in this paper.
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To judge rivalry, we use a method based on the Floyd-Warshall algorithm [11, 12, 14, 71].

The idea can be explained as follows: A strategy p is a rival if it ensures that its co-player cannot

obtain a higher long-term payoff regardless of the co-player’s strategy as well as the initial

state, when error probability e is zero. We emphasize that the statement must be true even if

the co-player’s strategy has a long memory and/or if the strategy p is known to the co-player.

One can judge the criterion by constructing a directed weighted graph G(p). Consider the

graph G for p = TFT as an example. As a memory-one strategy, its action depends only on the

the last round, so the relevant states are CC, CD, DC, and DD, each of which is represented as a

node in G. We represent possible transitions among these four nodes as directed edges. For

instance, at CC, TFT prescribes C, so the subsequent state is either CC or CD. Each edge is

assigned a weight corresponding to the relative payoff difference between the players. In our

example, the self-edge from CC to CC thus has weight zero, whereas the edge from CC to CD
has −1. In this way, we construct G(p). The point is that only cycles in G can contribute to the

long-term payoff. Let a negative cycle denote a cycle along which the total sum of weights is

negative. If a negative cycle exists, the co-player can take advantage of it to exploit the focal

player. Conversely, the absence of such negative cycles in G(p) guarantees that no strategy can

obtain a higher long-term payoff than p. The presence of a negative cycle in a graph can be

detected by the Floyd-Warshall algorithm in polynomial time, and this method is straightfor-

wardly extensible to longer-memory strategies [12].

The numbers of strategies in Fig 3 are obtained in the following way: When m1 + m2� 4,

we can enumerate all the possible strategies and check their efficiency and rivalry one by one.

This enumeration approach becomes impractical when m1 + m2 > 4, so we have estimated the

fraction of efficient ones and that of rival ones from randomly sampled 106 strategies. As for

FR strategies, it is possible to directly obtain the complete list of FR strategies using the algo-

rithm proposed in [12] because they are infrequent. We obtained the exact number of FR strat-

egies instead of Monte Carlo sampling.

Monte Carlo simulations

The Monte Carlo simulations for well-mixed populations have been conducted as follows. We

assume the limit of a low mutation rate, in which at most one mutant can compete with the

resident strategy, and no other mutation occurs until this mutant takes over the population or

dies out. At each time step, a mutant strategy Y is randomly sampled according to the two-step

process [Eq (9)], and it replaces the resident strategy X with fixation probability ρX!Y [Eq (6)]

[72]. We iterate this process for 106 time steps with discarding the initial 105 steps. The cooper-

ation level in Fig 4a is calculated as the time average of the cooperation levels of the resident

strategies, given by Eq (15).

For the simulations of group-structured populations, we assume that intra-group dynamics

is fast enough compared to inter-group dynamics and mutation, i.e., μin� μout and μin� ν.

As we have assumed in the case of well-mixed populations, a group is usually occupied by a

single resident strategy, which can be replaced by a different one that appears through either

mutation or out-group imitation and succeeds in fixation. The Monte Carlo simulations have

been conducted as follows.

1. Prepare a set of M randomly selected strategies as the initial state.

2. Choose one of the M groups randomly. Let us denote the strategy of this group as X.

3. With probability r, the group undergoes mutation.

a. Introduce a mutant strategy Y according to the two-step sampling scheme [Eq (9)].
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b. Replace X by Y with fixation probability ρX!Y [Eq (6)].

4. With probability 1 − r, the group undergoes out-group imitation.

a. Choose randomly one of the other groups. Let Y denote its strategy.

b. Replace X by Y with probability TX!Y [Eq (7)].

5. Go back to step 2.

The above process is repeated for 109 steps, from which we discard the initial 108 steps.

We have used OACIS and CARAVAN to manage the simulation results [73, 74].

Supporting information

S1 Appendix. Simulations for other settings. The simulation results for Sð2Þ and for differ-

ent parameters are shown. In addition, the model with the full separation of time scale is stud-

ied. Fig A. Evolutionary simulations for memory-2 strategy space. Evolutionary simulations

for Sð2Þ in a group-structured population (M = 103, N = 2). The upper (a-d) and the lower (e-

h) show the results for different out-group selection strengths σout = 30/(b − 1) and σout = 3/(b
− 1), respectively. The other simulation parameters are the same as those in Fig 6. Fig B. Simu-

lations with different parameters. Effects of M = 102, to be compared with Fig 6. The other

parameters are N = 2, e = 10−6 and σin = 30/(b − 1). For panels (a-h), we have used σout = 30/(b
− 1) whereas σout = 3/(b − 1) for the bottom panels. Each simulation runs for 108 time steps,

and the results are averaged over 10 independent runs. Fig C. Simulations with completely

separated time scales. The simulation results for the case where the timescales for out-group

imitations and mutations are completely separated. From left to right, the panels show the

cooperation level, (b) the fractions of non-FR efficient strategies, (c) the fractions of non-FR

rival strategies, and (d) the fractions of FR strategies. The parameters are same as those in Fig

6a–6f: M = 103, N = 2, e = 10−6, and σin = σout = 30/(b − 1). Simulations were conducted for 106

steps, discarding the initialization period of 105 time steps, and the results were averaged over

10 independent runs.

(PDF)
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