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Indirect reciprocity is a key explanation for the exceptional magnitude of cooperation
among humans. This literature suggests that a large proportion of human cooperation
is driven by social norms and individuals’ incentives to maintain a good reputation.
This intuition has been formalized with two types of models. In public assessment
models, all community members are assumed to agree on each others’ reputations;
in private assessment models, people may have disagreements. Both types of models
aim to understand the interplay of social norms and cooperation. Yet their results can
be vastly different. Public assessment models argue that cooperation can evolve easily
and that the most effective norms tend to be stern. Private assessment models often
find cooperation to be unstable, and successful norms show some leniency. Here, we
propose a model that can organize these differing results within a single framework.
We show that the stability of cooperation depends on a single quantity: the extent to
which individual opinions turn out to be correlated. This correlation is determined by
a group’s norms and the structure of social interactions. In particular, we prove that
no cooperative norm is evolutionarily stable when individual opinions are statistically
independent. These results have important implications for our understanding of
cooperation, conformity, and polarization.

cooperation | indirect reciprocity | social norms | evolutionary game theory | conformity

Indirect reciprocity can explain why unrelated individuals—even complete strangers—
might cooperate with each other (1–3). This explanation suggests that people cooperate
because they wish to maintain a positive reputation within their community. There are
a number of empirical patterns that align with this view. For example, humans act more
prosocially when their actions are widely observable (4–6); they seek information to
gauge the social standing of their interaction partners (7, 8); and they are more likely to
help those with a positive reputation (9–11).

To better understand these empirical patterns, theoretical studies work with two
types of models. The first type, the public assessment model (12–24), assumes that all
community members agree on each other’s reputations. In particular, if one member
thinks highly of some third party, then so does everyone else. Such an assumption may
appear as rather extreme. Yet it has been hugely successful, mostly because it drastically
simplifies a model’s mathematical complexity. Based on this assumption, Ohtsuki and
Iwasa (12, 13) were able to identify eight social norms that can stabilize cooperation.
These norms, known as the “leading eight,” have been widely studied since, even though
there are other evolutionarily stable norms that equally support cooperation (24).

The second type, the private assessment model (25–43), recognizes that individuals
may differ in how they view others. A mathematical analysis of this type of model is
more complex. Private assessment models need to keep track of how each population
member thinks of everyone else. The situation can be represented by an “image matrix”;
see Fig. 1. Each row of this matrix represents an individual who evaluates the reputations
of other group members. Each column represents whose reputation is evaluated. The
entries of this matrix correspond to the assigned reputations (in Fig. 1, they are black
or white, i.e., “bad” or “good”). This image matrix can change in time, depending on
whether individuals cooperate, how observable their actions are, and on the social norm in
place. With respect to the observability of individual actions, one can further distinguish
three types of models: simultaneous observation models (28–35), solitary observation
models (36–38), and models incorporating communication (39–43).

Each of these model types is well established. However, they have typically been
studied in isolation. Moreover, the various private assessment and public assessment
models often yield conflicting findings. For instance, public assessment models often
find that a particular leading-eight norm, “Stern Judging,” is most favorable for the
evolution of cooperation (14, 16). In contrast, in most private assessment models, the
very same social norm proves to be highly inefficient (25, 28). These discrepancies make
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Fig. 1. Schematic illustration of the models considered in this paper. We consider a population of N players (here, N=6). At each time step, randomly chosen
donor-recipient pairs play the donation game. In each game, the donor decides whether to cooperate (C) or to defect (D) according to its action rule P. Other
players may observe the donor’s decision and update its reputation according to their assessment rule R. The resulting reputations can be represented by
an image matrix. It records how each player assesses every other at a given time. Here, we represent the image matrix by a square with six rows and six
columns. Black entries indicate that the respective row player thinks negatively of the column player. White entries indicate positive opinions. In the following,
we revisit four classical models that differ in how these image matrices are updated. On the Left, there is the solitary observation model. Here, each interaction
is observed by a single player. As a result, the rows of the image matrix turn out to be independent. In the Top-Middle, there is the simultaneous observation
model, where each action is observed by any given player with probability q. As the observation probability q approaches 1/N, the model simplifies to the
solitary observation model. In the Bottom-Middle, there is the gossiping model by Kawakatsu et al. (39). In this model, players share their opinions with other
population members. When the gossip duration � approaches zero, the model becomes equivalent to the solitary observation model. When � →∞, the model
approaches the public assessment model depicted on the Right. In that model, opinions are perfectly synchronized.

it difficult to assess whether indirect reciprocity can sustain
cooperation at all, and which social norms are most effective.

Here, we propose a general framework to understand the
literature through the lens of opinion synchronization. Our
framework contains the previous models as special cases, and
it systematically reproduces their results. The two key quantities
in our model are the variables h and hG . The first variable h
describes how often, on average, individuals assess others as good.
The second variable hG captures to which extent opinions are
synchronized. For example, consider three distinct individuals,
Alice, Bob, and Charlie. Then hG corresponds to the conditional
probability that Charlie views Bob as good, given that Alice
does. The solitary observation model (36–38) corresponds to
the case hG = h. Here, opinions are statistically independent.
At the other extreme, the public assessment model assumes
hG =1. Here, opinions are perfectly correlated. The simultaneous
observation model and models that allow for communication
are in between these two extremes. They satisfy h ≤ hG ≤ 1
(Fig. 1). One important finding is that stable cooperation requires
opinions to be sufficiently synchronized. In particular, when
opinions are statistically independent, cooperative social norms
are either unstable or at most neutrally stable. As opinions become
more synchronized, say because of shared experiences or gossip,
cooperation can be established more easily.

Our results make an interesting connection to the literature
on conformity (44–46). In the context of evolutionary game
theory, this literature often argues that conformity may enhance
the chance people cooperate, even though cooperators are at a
slight disadvantage (47, 48). Our model offers a slightly different

perspective. In models of indirect reciprocity, a certain kind
of conformity is what allows cooperation to be in everybody’s
interest. To this end, we interpret conformity as the degree to
which individual opinions (about others) are synchronized. This
synchronicity is an emerging trait, which depends on the social
norm in place and on the structure of social interactions. In
particular, it depends on how publicly observable interactions are,
and to which extent individuals exchange gossip. We find that
only when opinions are sufficiently synchronized, the mechanism
of indirect reciprocity can be effective.

Model

We consider a model of indirect reciprocity that interpolates
between public and private assessment models. There is a
population of size N � 1. The members of this population
(referred to as “players”) engage in a sequence of donation games.
Each round, one player is randomly selected to act as a donor.
Another player is randomly selected to be the recipient. Donors
can either cooperate (C ) or defect (D). A cooperating donor pays
a cost c to provide a benefit b > c to the recipient. A defecting
donor pays no cost and provides no benefit. This elementary
process is repeated for many rounds, with changing donors and
recipients. Over the course of these games, the players accumulate
their payoffs.

During this sequence of the donation games, players form
opinions about each other. The opinion player i holds about j is
denoted as mij. The corresponding matrix M =(mij) is referred
to as an image matrix. Following the convention of the previous
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literature, we assume opinions are binary, either good (G) or
bad (B). These opinions can change over time. Moreover, one
player’s opinion about another player is not necessarily shared by
all other population members. In terms of the image matrix, this
means that the entries in any given column do not need to be the
same.

A strategy of player i is a combination (Pi, Ri) of an
action rule and an assessment rule (in line with the indirect
reciprocity literature, we use the terms “strategy” and “social
norm” synonymously). Herein, we consider stochastic second-
order strategies (24). The action rule Pi(mij) determines the
cooperation probability of donor i, given the donor’s opinion mij
about recipient j. Let us denote the realized action asAij ∈ {C,D}.
An observer k assesses the donor i based on the donor’s action Aij
and the observer’s opinion about the recipient mkj. The donor
is assessed as good with probability Rk(mkj, Aij). Otherwise, the
donor is assessed as bad. Table 1 gives a few examples of well-
known assessment rules. Note that because neither the action
rule nor the assessment rule depend on a player’s self-image, the
diagonal entries mii of the image matrix are irrelevant.

Assessments can be subject to errors. With probability �a,
observers assign the opposite reputation to a donor, compared to
the assignment prescribed by the assessment rule. As a result, the
effective assessment rule becomes

R̃ (A, X ) = (1− �a)R (A, X ) + �a [1− R (A, X )] . [1]

In the following, we refer to R̃ as R for simplicity. Moreover, we
limit ourselves to the case 0 <�a≤ 1/2 (if the error probability
was greater than 1/2, the meaning of “good” and “bad” would
be flipped). Because the error probability �a is positive, effective
assessments are stochastic, 0 < R < 1. This stochasticity ensures
that the reputation dynamics is ergodic. As a result, the time
average of the image matrix reaches a unique stationary state
that is independent of the initial conditions (for details, see SI
Appendix).

Based on this general framework, we consider four different
models to update the image matrix. First, we consider the solitary
observation model (36–38), as depicted on the left hand side
of Fig. 1. At each donation game, a single observer is randomly
chosen to update their opinion about the donor. Since only
a single element of the image matrix is updated each round,
the elements in each column are statistically independent. This
simplification allows for a fully analytical treatment. Here, we
only need to keep track of the fraction h of good entries in the
image matrix.

Second, we consider the simultaneous observation model,
depicted in the Top of Fig. 1. This model allows each population
member to observe the donor’s action with some fixed observa-
tion probability q. In particular, several observers may witness the
same interaction simultaneously. As q becomes small (compared
to the population size), the model becomes equivalent to the
solitary observation model. However, for general q, an analytical
treatment is more challenging. Except for a few special cases, this
model often requires numerical simulations.

Third, we consider the gossiping model by Kawakatsu
et al. (39), as depicted in the Bottom of Fig. 1. This model allows
for communication among the players. Donation games are
played between all pairs in the population. Each player updates
its opinion about each of the other players based on their action
as the donor in a randomly chosen game. Thus, on average,
each action is observed by a single observer, as in the solitary
observation model. The assessment phase is followed by a gossip
phase, where players exchange opinions. This phase consists of

Table 1. Examples of the assessment rules
Recipient’s reputation G B
Donor’s action C D C D

Simple standing (L3) 1 0 1 1
Stern judging (L6) 1 0 0 1
Image scoring 1 0 1 0
Shunning 1 0 0 0

We represent four well-known assessment rules. In each case, the probability R(X, A) of
assessing the donor as good is shown for each combination of the donor’s action A and
the recipient’s reputation X . Among these four rules, only the leading-eight strategies L3
and L6 promote evolutionarily stable cooperation in the public assessment model.

several gossiping events. During each event, a randomly chosen
pair of players exchange their opinions about a randomly chosen
population member. As a result, a randomly chosen entry of
the image matrix replaces another randomly chosen entry in the
same column. The gossiping events occur repeatedly for a certain
number of times, characterized by the gossip duration �. The
parameter � controls the degree of synchronization of opinions.
When � = 0, the model is equivalent to the solitary observation
model. As � →∞, we recover the public assessment model.

The public assessment model is depicted on the Right hand
side of Fig. 1. This model assumes that all players always have the
same opinion about each coplayer. This assumption implies that
all entries in any given column of the image matrix are the same.
The public assessment model represents the most extreme case
of opinion synchronization. Because it allows for a comfortable
analytical treatment, it is often used as a benchmark.

Analysis of the Solitary Observation Model

To illustrate our approach, we first analyze the solitary obser-
vation model. Here, opinions of different individuals turn out
to be statistically independent, which simplifies the analysis. In
subsequent sections, we generalize this approach to allow for
arbitrary correlations between opinions.

For the solitary observation model, we show that evolutionarily
stable cooperation is impossible. More specifically, we show
that for any second-order resident strategy, either unconditional
cooperation (ALLC) or unconditional defection (ALLD) is
always a best response. In the main text, we present an outline of
the analysis; all details are in the SI Appendix.

We consider a monomorphic resident population in which
everyone uses the strategy (P, R). Because of the assumption
of solitary observations, the entries of the image matrix are
statistically independent. Moreover, due to the ergodicity of
the process, the fraction h of good entries in the image matrix
converges to a unique stationary value after a sufficiently long
time. This value satisfies the equation

h = h2RP (G,G) + h(1− h) [RP (G, B) + RP (B,G)]

+ (1− h)2 RP (B, B) .
[2]

Here, the variable

RP(X, Y ) ≡ P(X )R(Y, C) + [1− P (X )]R(Y,D). [3]

denotes the probability that an observer k assesses the donor i
as good, given their initial opinions about recipient j, mij = X
and mkj =Y . Eq. 2 provides an implicit formula for the average
fraction h of well-assessed individuals in a homogeneous resident
population.
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Next, we consider a small minority of players who deviate
toward a different strategy. For brevity, we refer to the deviating
players as mutants. To compute whether mutants can invade, we
need to compute their payoffs, which in turn depends on how
often residents cooperate with a mutant. To do this computation,
it turns out to be useful to consider the average cooperation rate
of a mutant toward the residents, pmut→res. Importantly, here we
do not have to define the specific form of the mutant’s action and
assessment rule. For the following calculations, only the mutants’
actions matter, irrespective of how complex their underlying
strategies are. LetH denote the average probability that a resident
considers a mutant to be good. After a sufficiently long time, H
converges to a unique stationary fixed point, defined by

H = pmut→res [hR (G,C) + (1− h)R (B, C)]
+ (1− pmut→res) [hR (G,D) + (1− h)R (B,D)] .

[4]

In particular, we obtain the following formula for how likely
residents are to cooperate with the mutant,

pres→mut = HP (G) + (1−H) P (B)
= pmut→resPb + P0.

[5]

The coefficient P0 is independent of the mutant’s strategy; its
exact form is given in SI Appendix. The other coefficient Pb can
be interpreted as the expected net reward for cooperation,

Pb ≡ [P (G)− P (B)]
{
h [R (G,C)− R (G,D)]

+ (1− h) [R (B, C)− R (B,D)]
}
.

[6]

The factor [P (G)−P (B)] reflects how valuable a good
reputation is. The larger this factor, the more likely a good
player receives cooperation compared to a bad player. The second
factor

{
h [R (G,C)−R (G,D)] + (1−h) [R (B, C)−R (B,D)]

}
indicates how much more likely the mutant gets a good
reputation by cooperating.

Crucially, Eq. 5 indicates that pres→mut is a linear function
of pmut→res. In Fig. 2, we illustrate this linear relationship
with numerical simulations. For these simulations, we consider
four different resident strategies (the same as in Table 1). The
resident strategy is adopted by N−1 population members. The
remaining mutant player either cooperates unconditionally with
a certain probability, or adopts a deterministic second-order
strategy. Given this population composition, we simulate the
game dynamics described in Model. Over the course of the
simulation, we record how often the mutant cooperates with
the residents, and conversely how often residents cooperate with
the mutant. As predicted by Eq. 5, we find a perfect linear
relationship between these cooperation rates. This relationship
is independent of the complexity of the mutant strategy.

Because cooperation rates obey a linear relationship, also the
mutant’s payoff can be written as a linear function,

�mut = bpres→mut − cpmut→res

= (bPb − c) pmut→res + bP0.
[7]

This representation of the mutant’s payoff is useful because
linear functions are comparably easy to analyze. In particular,
they typically attain a unique maximum on the boundary of
the domain (in this case, for pmut→res ∈ {0, 1}). For Eq. 7, we
conclude that the mutant maximizes its payoff when

pmut→res =


1 when bPb > c
any when bPb = c
0 when bPb < c

. [8]

Fig. 2. Relationship of the cooperation levels between residents and mu-
tants. As resident norms, we consider Simple Standing, Stern Judging, Image
Scoring, and Shunning, as defined in Table 1. Dashed lines are theoretical pre-
dictions obtained from Eq. 5. Points are obtained from numerical simulations
for N= 100 and �a = 0.02 (see Materials and Methods, Numerical Simulations
for details). Circles indicate results for unconditionally cooperating mutants
with cooperation probability pmut→res ∈ {0,0.2,0.4,0.6,0.8,1.0}, respectively.
Triangles are the results for deterministic second-order mutants. We observe
that regardless of the mutant strategy, a resident’s average cooperation rate
toward the mutant, pres→mut, is a linear function of the mutant’s cooperation
rate pmut→res.

Thus, a mutant can always maximize its payoff by playing
ALLC or ALLD. In contrast, conditional cooperation is generally
not optimal. The only exception arises when bPb = c, which
corresponds to the Generous Scoring norm (30). But even here,
any mutant strategy obtains the same payoff as the residents;
thus any mutant can invade by neutral drift. In this sense, any
conditionally cooperative strategy is unstable.

For the above result, the assumption of statistically indepen-
dent opinions is crucial. For an intuition, consider the best action
for the donor Alice, toward the recipient Bob, when observed
by Charlie. If Alice wants to maximize her long-term payoff,
and if opinions are statistically independent, Alice does not
need to change her actions depending on her own opinion of
Bob. For her, only the opinion of Charlie, who is a potential
future interaction partner, matters. It would be best for Alice
if she could condition her action based on Charlie’s opinion.
However, because of the independence assumption, her own
view of Bob provides Alice with no information about Charlie’s
opinion. Conversely, from Charlie’s perspective, Alice looks as if
she is randomly cooperating with a certain probability, even as
Alice changes her actions depending on her own opinion. Thus,
if the long-term benefit of cooperation exceeds the immediate
cooperation costs, b Pb> c, Alice should always cooperate. If the
long-term benefit is below this threshold, Alice should always
defect. In SI Appendix, we derive an analogous conclusion for
second-order norms with nonbinary reputations.

The above results assume mutants to be infinitesimally rare. A
similar argument, however, also applies when the fraction of
mutants is strictly positive: no resident strategy can prevent
the neutral invasion by randomly cooperating mutants. To
see why, let pr be the cooperation level of the pure resident
population. From a resident’s viewpoint, other residents act as
if they are randomly cooperating with probability pr . Thus, a
resident cannot distinguish another resident from a mutant who
unconditionally cooperates with probability pr . This neutrality
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remains even after the share of mutants in the population
increases. Hence, the residents are subject to neutral invasion
for any mixed population of residents and mutants, as shown in
SI Appendix, Fig. S2. This conclusion only relies on the statistical
independence of opinions. In particular, the same conclusion
applies to more complex strategies, such as strategies with
nonbinary opinions (23, 31, 35), higher-order strategies (16),
and strategies with dual-reputation updates (24).

The above arguments, however, require that there are at most
two strategies in the population. Hence, this result does not
rule out the possibility that a mixture of several strategies forms
stable cooperation. For instance, previous research suggests that
Simple Standing (L3) and ALLC can stably coexist when these
strategies compete with ALLD (36–38, 40–42). We do not
have a general argument on the stability of such a mixture. It
is unknown whether the mixture is stable against a more diverse
set of strategies, or invadable by a certain mutant such as random
cooperators.

Analysis on Models with Correlated Opinions

In a next step, we generalize the above approach to allow for
correlated opinions. In that case, we show there are evolutionarily
stable norms that sustain cooperation. Again, in the following, we
present an outline of the analysis; SI Appendix contains all details.

Consider three players, Alice, Bob, and Charlie, whose
opinions may be correlated. The first player, Charlie, considers
Bob as good with probability h. Let hG denote the conditional
probability that Alice assigns a good reputation to Bob as well,
given that Charlie does. Similarly, let hB denote the conditional
probability that Alice assigns a good reputation to Bob given that
Charlie does not. The three probabilities h, hG , and hB are not
independent of each other. After all, the probability that two
randomly chosen players have opposite opinions is equal to both
h(1−hG) and (1−h)hB. Therefore, h(1−hG) = (1−h)hB needs to
hold. In particular, when hG =h, hB =h as well. This corresponds
to the special case of independent opinions. If Alice’s opinion is
positively correlated with Charlie’s, then hG > h > hB; Alice is
more likely to consider Bob as good when Charlie does. In the
perfectly correlated case (i.e., for the public assessment model),
hG =1 and hB =0.

At this moment, we do not make any further assumptions
on how exactly opinions get correlated. For example, Alice and
Charlie could have both witnessed Bob’s behavior simultane-
ously (28, 29, 31–34, 49). Alternatively, they could have ex-
changed opinions by gossiping (39, 40, 50), or obtained relevant
information from some public institution (42). Our results are
independent of how correlations are achieved.

Consider a monomorphic population in which all players use
the norm {P, R}. As before, we can derive an equation that needs
to be satisfied in the stationary state,

h = hhGRP (G,G)
+ h (1− hG) [RP (G, B) + RP (B,G)]
+ (1− h) (1− hB)RP (B, B) .

[9]

In particular, there is only one degree of freedom: given the
strategy {P, R}, h is determined once hG is fixed (and vice versa).
The exact value of hG depends on the considered model. Once we
define a model (such as solitary observation, or the simultaneous
observation model), all three quantities h, hG , hB are uniquely
determined. For the solitary observation model, h = hG = hB,
and Eq. 9 simplifies to Eq. 2. For other models, it may not be

possible to obtain analytical expressions for h and hG . In that
case, we need simulations; see Materials and Methods for details.

Next, we consider a mutant having a different action rule
P′ but the same assessment rule R. We are going to show that
the optimal action rule is either ALLC, ALLD, or conditional
cooperation with P′(G) = 1 and P′(B) = 0. We derive under
which conditions conditional cooperation is optimal for given
{P, R}, h, and hG . To this end, let H be the average probability
that a mutant is assessed as good. Again, H converges to a unique
stationary value after a sufficiently long time. Since H can be
written as a function of h and hG , the probability that a resident
cooperates with a mutant becomes

pres→mut = HP(G) + (1−H) P(B)

= [hhGΔG + h (1− hG)ΔB] P′(G)

+ [h (1−hG)ΔG + (1−2h+hhG)ΔB] P′(B)
+ P1. [10]

Here, ΔG and ΔB are defined as

ΔG ≡ [R (G,C)− R (G,D)] [P (G)− P (B)]
ΔB ≡ [R (B, C)− R (B,D)] [P (G)− P (B)] .

[11]

Moreover, P1 is a constant term that does not depend on P′.
Similarly, the probability that a mutant cooperates with a resident
is

pmut→res = hP′(G) + (1− h)P′(B). [12]

Therefore, the mutant’s payoff is

�mut = bpres→mut − cpmut→res

= �GP′(G) + �BP′(B) + bP1,
[13]

where we defined

�G ≡ hhG(bΔG−c) + h(1−hG)(bΔB−c)
�B ≡ h(1−hG)(bΔG−c) + (1−2h+hhG)(bΔB−c).

[14]

Since �mut is a linear function of P′(G) and P′(B), the best
action rule P̂′ for the mutant is summarized as follows:

P̂′(G) =


1 when �G > 0
any when �G = 0
0 when �G < 0

P̂′(B) =


1 when �B > 0
any when �B = 0
0 when �B < 0

.

[15]

From this equation, we conclude that the best action rule
P̂′ needs to be deterministic, except for the special cases of
�G = 0 or �B = 0. When �G and �B have the same
sign, unconditional cooperation or defection is the best action.
Conditional cooperation is optimal when �G >0 and �B <0. In
that case, the average cooperation rate of the population coincides
with the fraction h of individuals with a good reputation. Note
that when h= hG , �G and �B have the same sign, reproducing
the conclusion of the previous section.

In Fig. 3, we illustrate these results for the norms Stern Judging
(L6) and Simple Standing (L3). The Top panels, Fig. 3 A and B,
show the functional relationship between h and hG . In each case, h
increases as hG increases: the cooperation level rises as opinions are
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A B

C D

Fig. 3. (A and B) The relationship between h and hG for the norms L6 (Stern Judging) and L3 (Simple Standing). The gray dashed lines indicate the case h=hG ,
which is shown as a reference. For both norms, h increases as hG increases. The leftmost hG is the minimal value obtained for the solitary observation model;
here, hG = h. The rightmost hG corresponds to the public assessment model hG = 1. Results for the simultaneous observation model with N= 100 and q= 1
are shown as red triangles. Purple crosses indicate the gossiping model with � = 0.1, 0.3, 1, and 3, from left to right. (C and D) The blue area indicates the
benefit-to-cost ratios b/c for which a conditionally cooperative action rule is stable. As hG increases, the stable range of b/c expands. We use an assessment
error rate of �a=0.02.

more synchronized (such a positive relationship does not need to
hold for other norms). In addition, we depict the realized values
of h and hG for each of the different model types considered.
The most extreme models are the solitary observation model
(to the Left) and the public assessment model (to the Right),
respectively. The Bottom panels, Fig. 3 C and D, show the ranges
of the benefit-to-cost ratio b/c for which conditional cooperation
is stable, calculated from Eq. 15. The stable ranges of b/c expand
with hG , indicating that cooperation is easier to sustain when
opinions are more synchronized. By superimposing the Upper
and the Lower panels, we can also infer for which social structure
each of the two norms is stable. For example, for Stern Judging,
the Upper panel suggests that in the simultaneous observation
model, we obtain hG =0.5. For this value of hG , the Lower panel
suggests that Stern Judging is unstable, for any benefit-to-cost
ratio, in line with previous research (26). In contrast, for Simple
Standing, simultaneous observations lead to hG ≈ 0.98, which
permits stable cooperation if b/c is sufficiently small.

Application to Specific Models

In the following, we apply this general formalism to three special
cases: the public assessment model, the simultaneous observation
model, and the gossiping model. In this way, we show that we
are able to systematically reproduce a large set of previous results
within a single framework.

Public Assessment Model. First, we consider public assessment.
Here, opinions are perfectly synchronized, hG = 1 and hB = 0.
For this model, the set of stable norms that sustain cooperation

has been fully characterized in ref. 24. According to Eq. 15,
conditional cooperation with P(G)=1 and P(B)=0 is optimal
when {

�G > 0 ⇐⇒ bΔG > c
�B < 0 ⇐⇒ bΔB < c

. [16]

A conditionally cooperative response is the unique best action
rule when {

b [R (G,C)− R (G,D)] > c
b [R (B, C)− R (B,D)] < c

, [17]

These results perfectly align with the previous characterization
of stable second-order norms in ref. 24.

Simultaneous Observation Model. Next, we consider a model
where multiple observers may assess the donor simultaneously.
To this end, we build on the work of Fujimoto and Ohtsuki
(32–34). They approximate the distribution of the goodness in
the stationary state for q= 1. For example, when errors are rare
and the population is large, �a�1 and N→∞, the distribution
of goodness under the L3 norm can be written as the sum of delta
functions (see figure 3D in ref. 33):

p(g) = (1− 2�a)� (g − (1− �a))
+ �a� (g − (1− 3�a)) + �a� (g − 2�a) + O(�2

a ).
[18]

From Eq. 18, h and hG are derived as

h = 1− 2�a + O(�2
a ), hG = 1− �a + O(�2

a ). [19]
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It then follows from Eqs. 15 and 19 that conditional cooperation
is stable if and only if both of the following conditions are met,{

�G > 0 ⇐⇒
b
c > 1 + O(�a)

�B < 0 ⇐⇒
b
c < 2 + O(�a).

[20]

Again, these conditions reproduce the results by Fujimoto and
Ohtsuki (33, 34). In addition, we consider other general cases in
SI Appendix. In particular, we consider strategies that interpolate
between L3 and L6, and results for q < 1. For these cases, we
rely on numerical simulations to calculate h and hG . Once h and
hG are obtained, the stable range of b/c is derived using Eq. 15.
The resulting theoretical predictions again agree with the results
of numerical simulations.

Gossiping Model. Another application of the above theory is the
gossiping model by Kawakatsu et al. (39). In their model, the
gossip duration � quantifies the amount of peer-to-peer gossip
between private observation periods. Kawakatsu et al. derive an
analytic relationship of h, hG and � as follows:

1− hG = (1− h)e−� . [21]

When �→0, the gossiping process is equivalent to the solitary
observation model. When � → ∞, it reproduces the public
assessment model.

For an illustration, we consider the assessment rule L6 (for
more details, see SI Appendix). Kawakatsu et al. (39) consider
the replicator dynamics when L6 competes with both ALLC
and ALLD. They show that a pure L6 population can only be
stable when b/c > (b/c)∗ ≡ 1/ (1− 2�a). If that condition is
satisfied, they obtain the critical gossip duration �∗ above which
a pure L6 population is stable,

�∗ = log

2−
b
c

b
c −

1
2(1−�a)

( b
c

b
c −

1
1−2�a

) . [22]

The same conclusion can be derived from our framework.
From Eqs. 9 and 21, h and hG are uniquely determined. The
conditionally cooperative action rule is stable when �G > 0 and
�B < 0, as defined in Eq. 14. By analyzing these conditions,
we obtain the same critical benefit-to-cost ratio, and the same
critical gossip duration. While the previous study considers
only ALLC and ALLD as possible evolutionary competitors,
we conclude that the conditionally cooperative strategy is stable
against mutants with any action rule, including stochastic
ones.

Discussion

In this paper, we propose a general framework to analyze the
evolutionary stability of indirect reciprocity. The literature on
indirect reciprocity is vast, and researchers have established several
distinct types of models (12–43). Unfortunately, the different
model types are often studied in isolation, and they sometimes
lead to conflicting results. Here, we show that all this previous
work can be organized by considering a single key quantity:
the degree to which individual opinions are correlated. This
correlation in turn depends on the social norm in place, on
the observability of interactions, and on the degree to which
individuals share their views. As a rule of thumb, we find that

the more opinions are correlated, the easier it becomes to sustain
cooperation. Conversely, if opinions turn out to be completely
uncorrelated, cooperative norms become evolutionarily unstable.
Some previous work has already hinted at the negative effects of
disagreements on cooperation (e.g., refs. 25–28). Yet there has
been little work to quantify these effects. Our study highlights
the role of opinion synchronization in a mathematically explicit
manner.

Within our framework, one extreme case is the public assess-
ment model, where opinions are perfectly synchronized. The
other extreme is the solitary observation model, where opinions
are statistically independent. Although these two extreme cases
may be strong idealizations, they serve as useful benchmarks due
to their analytical tractability. Between these extremes, there are
several models in which opinions are correlated, but incompletely
so. These incomplete correlations can arise, for example, when
several individuals tend to witness the same event, as in the
simultaneous observation model (28–35). Alternatively, they can
arise when individuals use gossip to partly synchronize their views,
or at least the information they have (39). These intermediate
models are more realistic, but they render analytical solutions
more difficult to obtain. Our results indicate that we do not
need to understand the respective image matrices in full detail.
Instead, we only need to know the two quantities h and hG
(the first two moments of the goodness distribution). They
provide all the information needed to characterize whether a
given social norm can sustain cooperation. Future theoretical
studies on opinion synchronization, such as those in refs. 39 and
49, can provide a more detailed understanding of how the values
of h and hG depend on the exact social setup in which interactions
take place.

Herein, we show that some degree of opinion synchronization
is crucial to maintain cooperative relationships. This may have
implications for our understanding of typical group sizes in
human societies, such as those indicated by Dunbar’s number
(51, 52). In smaller populations, opinions tend to synchronize
more readily, thereby facilitating cooperation. In contrast, as
a group increases, opinion synchronization becomes progres-
sively more challenging. This difficulty in aligning opinions in
larger groups ultimately sets a limit on the group size within
which cooperation can be maintained. Our research implies the
importance of group size in stabilizing cooperative interactions
via indirect reciprocity.

Our findings on the importance of opinion synchronization
also resonate with previous work on effective punishment after
norm violations (53, 54). This literature studies under which
conditions group members are able to sanction certain offenses
in the presence of uncertainty. The model of Dalkiran et al (53)
suggests that they can only do so if it becomes common
knowledge (or more precisely, “common p-belief”) that a norm
violation occurred in the first place. Their result follows a similar
logic as in our model. Once individuals disagree on whether or
not a norm violation occurred, it becomes too costly for any
single individual to take action.

Without a doubt, our study has several limitations. While
we have shown that opinion synchronization is crucial for
evolutionarily stable indirect reciprocity, this does not mean
that opinion synchronization is sufficient. In particular, we
have only considered mutants who deviate from a population’s
norm by choosing different actions. Instead, mutants may also
differ in how they assess other people’s actions. For instance, a
mutant with an assessment rule that leads to a higher level of
synchronization might be able to invade. Furthermore, while
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opinion synchronization does help stabilize cooperation, the
lack of evolutionarily stable strategies in the solitary observation
model does not rule out cooperation entirely. Even if opinions
are uncorrelated, indirect reciprocity might evolve if additional
mechanisms for cooperation are in place, such as group struc-
ture (55). Another valuable direction is to explore models with
continuous degrees of cooperation (35, 56) and models with an
explicit punishment option (57–59).

Finally, an important open question is how mechanisms
for opinion synchronization coevolve with social norms. We
studied models with simultaneous observation and gossiping, but
other possibilities exist. These mechanisms could have coexisted
or evolved in a specific sequence. Furthermore, these actions
to promote synchronization may themselves be costly, which
could again affect the stability of cooperation. Investigating the
evolution of these mechanisms is another promising direction for
future research on indirect reciprocity.

Materials and Methods

Numerical Simulations. WeconductedMonteCarlosimulationstovalidatethe
theoretical predictions. We consider a population of N players. The reputation
state is represented by an image matrix of size N × N. At each time step, a
randomly chosen player i is selected as the donor, and a randomly chosen player
j is selected as the recipient. The donor i decides its action based on its action
rule. Then, the reputation of the donor (i’th column of the image matrix) is
updated. How the reputation is updated depends on the assessment rule and
the model. More details and pseudocodes for each of these models are described
in SI Appendix.

We first conducted tinit steps to equilibrate the image matrix and then ran
tmeasure steps to measure the quantities. The values ofh andhG are calculated by
measuring the average and the variance of the goodness of the players (32, 33).

Here, we define the goodness of player-i, gi, as the fraction of the good image
in the i-th column of the image matrix excluding the diagonal element:

gi =
∑
j 6=i

�(mji, G)/(N− 1), [23]

where �(x, y) is the Kronecker delta function. The average goodness taken over
i equals h: h = 〈gi〉. The product hhG is the expected probability that two
randomly chosen players agree that another randomly chosen player is G. Thus,
for a finite N,

hhG =

〈
gi

(N− 1) gi − 1
N− 2

〉
=

N− 1
N− 2

〈
g2
i

〉
−

〈
gi
〉

N− 2

hG =
1

N− 2

(N− 1)

〈
g2
i

〉
〈
gi
〉 − 1

 .

[24]

When N→∞, hG → 〈g
2
i 〉/〈gi〉.

The parameters used in this study are N = 100, �a = 0.02, tinit = 105,
and tmeasure = 106. The source code used in this study is available in
Github (60).

Data, Materials, and Software Availability. Source code data have been
deposited in GitHub (https://github.com/yohm/sim_indirect_opinion_sync)
(60). All other data are included in the manuscript and/or SI Appendix.
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