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Cooperation in alternating interactions with
memory constraints
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In repeated social interactions, individuals often employ reciprocal strategies to maintain

cooperation. To explore the emergence of reciprocity, many theoretical models assume

synchronized decision making. In each round, individuals decide simultaneously whether to

cooperate or not. Yet many manifestations of reciprocity in nature are asynchronous. Indi-

viduals provide help at one time and receive help at another. Here, we explore such alter-

nating games in which players take turns. We mathematically characterize all Nash equilibria

among memory-one strategies. Moreover, we use evolutionary simulations to explore various

model extensions, exploring the effect of discounted games, irregular alternation patterns,

and higher memory. In all cases, we observe that mutual cooperation still evolves for a wide

range of parameter values. However, compared to simultaneous games, alternating games

require different strategies to maintain cooperation in noisy environments. Moreover, none of

the respective strategies are evolutionarily stable.
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Cooperation can be maintained by direct reciprocity, where
individuals help others in repeated interactions1–3. Tra-
ditionally, researchers capture the logic of direct recipro-

city with the repeated prisoner’s dilemma4–17. According to that
model, two individuals—usually referred to as players—interact
with each other over several rounds. In each round, both players
can either cooperate or defect. Mutual cooperation yields a better
payoff than mutual defection, but each individual has an incen-
tive to defect. Theoretical and experimental work suggests that
cooperation can evolve if there are sufficiently many interactions
between the individuals18. This work has been used to explain a
wide variety of behaviors, including why humans are more likely
to cooperate in stable groups19, why certain animal species share
food20, and why firms are able to achieve higher market prices
when they engage in collusion21.

A standard assumption that underlies much of this research is
that individuals make their decisions simultaneously (or at least
in ignorance of the co-player’s current decision). We refer to this
kind of repeated interaction as a simultaneous game (Fig. 1a). For
many natural manifestations of reciprocity, however, simulta-
neous cooperative exchanges are unlikely or even impossible,
such as when people ask for favors22, vampire bats donate
blood to their conspecifics20, sticklebacks engage in predator
inspection23, or ibis take turns when leading their flock24. Such
interactions are better captured by alternating games, in which
players consecutively decide whether to cooperate25–28. When
individuals decide asynchronously, they make their decisions
based on different histories. The most recent events one player
has in memory differ from the most recent events that the next
player takes into account (Fig. 1b). Such asymmetries in turn
make it more difficult to successfully coordinate on cooperation.
As a result, many well-known strategies like Tit-for-Tat or Win-
Stay Lose-Shift fail to evolve when players move alternatingly25,26.
Instead, previous computational25–27 and experimental studies29
suggest that individuals need to be more forgiving. However, a
full understanding of optimal play in alternating games is lacking,
even though optimal behavior in the simultaneous game is by
now well-analyzed30–38.

Here, we propose an analytical approach to describe when
cooperation evolves in the alternating game. In line with the
previous literature, we typically focus on individuals with so-
called memory-one strategies3. Memory-one strategies depend on
each player’s most recent move. Our analysis involves two steps.
First, we show that successful play in alternating games does not

require a sophisticated cognitive apparatus. More specifically,
when interacting with a given memory-one opponent, it suffices
to respond with a reactive strategy that only depends on the co-
player’s most recent move. This result is reminiscent of a previous
finding of Press and Dyson for the simultaneous game39. They
showed that against a memory-one strategy, there is nothing to
gain from having a larger memory than the opponent. Our result
for the alternating game goes one step further. Against a memory-
one strategy, players can afford to have a strictly lower memory,
without any loss to their or their co-player’s payoff. As we show,
this result crucially depends on the alternating move structure; it
is not true when players move simultaneously. In a second step,
we show that in order to identify the best response to a given
memory-one player, we only need to check the four most extreme
reactive strategies: unconditional defection, unconditional coop-
eration, Tit-for-Tat, and Anti-Tit-for-Tat. Using this approach,
we identify all Nash equilibria among the memory-one strategies.

In the absence of errors, we find an unexpected equivalence. The
very same memory-1 strategies that can be used to enforce coop-
eration in the simultaneous game also enforce cooperation in the
alternating game. However, once we take into account errors, the
predictions for the two models diverge. In the simultaneous game,
Win-Stay Lose-Shift is evolutionarily stable when the benefit to cost
ratio is sufficiently large and when errors are sufficiently rare40,41. In
that case, there is a simple rule for how to sustain full cooperation:
individuals should repeat their previous action if it yielded a suffi-
ciently large payoff, and switch to the opposite action otherwise. In
contrast, in the alternating game, all stable cooperative strategies
require players to randomize. After mutual defection, they need to
cooperate with some well-defined probability that depends on the
game parameters and the error rate. Although the respective stra-
tegies in the alternating game are Nash equilibria, we show that
none of them is evolutionarily stable. As a result, evolving coop-
eration rates in the alternating game often tend to be lower than in
the simultaneous game, although this difference is smaller than
perhaps expected from static stability considerations alone. We
summarize our analytical findings in Fig. 2.

Our work suggests that in most realistic scenarios, successful
play in alternating games requires different kinds of behaviors than
predicted by the earlier theory on simultaneous games. In this way,
we corroborate earlier experimental work on human cooperation29
and provide theoretical methods to further analyze repeated games
in the future. Overall, we find that cooperation is still feasible in
alternating games. However, the strategies that enforce cooperation
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Fig. 1 Game dynamics for the simultaneous and the alternating game. In both the simultaneous and the alternating game, two players interact repeatedly.
In each turn, they decide whether to cooperate (C) or to defect (D). In the simultaneous game (a), they make their decision at the same time (or at least
not knowing the other player’s decision). In the alternating game (b), one player decides before the other player does. In both cases, we study memory-1
strategies. That is, an individual’s next action only depends on each individual’s previous action. We illustrate the information each individual takes into
account for their last decision with colored ellipses. In the simultaneous game, individuals take into account the same information. In the alternating game,
decisions are based on different sets of information.
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can be neutrally invaded, and hence cooperation tends to be more
short-lived than in the simultaneous game.

Results
Model description. In the following, we formulate a simple
baseline scenario, which we use to derive our main analytical
results (see also Supplementary Note 1). More general scenarios
are discussed in a later section, and in full detail in Supplementary
Note 3. We consider interactions between two players, player 1
and player 2. Both players repeatedly decide whether to cooperate
(C) or defect (D). These repeated interactions can take place in
two different ways. In the simultaneous game, there is a discrete
number of rounds. In each round, both players make their
decision at the same time, not knowing their co-player’s decision
(Fig. 1a). In contrast, in the alternating game, the players move
consecutively. We consider the strictly alternating game: Player 1
moves first, and then player 2 learns about player 1’s decision and
moves next (Fig. 1b). We note that there are also variants of the
alternating game in which the order of moves is random25,28. In
particular, one player may by chance make two or more con-
secutive moves before it is the other player’s turn again. The effect
of such irregular alternation patterns will be discussed later.

For the simultaneous game, the possible payoffs in each round
can be represented by four parameters. Players receive the reward
R in rounds in which they both cooperate; they receive the
temptation payoff T and the sucker’s payoff S, respectively, if only
one player cooperates; and they receive the punishment payoff
P in case they both defect. For T > R > P > S, we obtain the
prisoner’s dilemma. In the alternating game, however, it is useful
to assume that payoffs can be assigned to each player’s individual
action25. In that case, the value of one player’s cooperation is
independent of the co-player’s previous or subsequent decision

(or equivalently, payoffs are independent of how the two players’
decisions are grouped into rounds). As a result, we obtain the
donation game3. Here, cooperation means to pay a cost c > 0 in
order to provide a benefit b > c to the co-player. The donation
game is a special case of a prisoner’s dilemma for which

R ¼ b " c; S ¼ "c; T ¼ b; P ¼ 0: ð1Þ

To compare the alternating game with the simultaneous game, we
assume payoffs satisfy (1) throughout.

In the baseline scenario, we consider infinitely repeated games,
and we study players who make their decisions based on each
player’s most recent move. In the simultaneous game, the
respective strategies are called memory-1 strategies42; they take
into account the outcome of one previous round (Fig. 1a). Such
strategies can be represented as a 4-tuple, p= (pCC, pCD, pDC, pDD).
The entry pij denotes the probability to cooperate in the next
round. This probability depends on the player’s action i and the
co-player’s action j in the previous round. The equivalent strategy
class also exists in alternating games25. In alternating games,
however, there is no longer a unique previous round to which
both players refer. Instead, the last round that is taken into
account depends on the perspective of each player. It consists of
the respective last moves of the two players (Fig. 1b). An
important subset of memory-1 strategies is the set of so-called
reactive strategies. Here, players ignore their own previous action
and only condition their behavior on what the co-player
previously did. Reactive strategies are therefore those memory-1
strategies for which pCC= pDC and pCD= pDD.

Some well-known examples of memory-1 strategies for the
simultaneous game include Always Defect, ALLD= (0, 0, 0, 0), Tit-
for-Tat, TFT= (1, 0, 1, 0), and Win-Stay Lose-Shift, WSLS= (1, 0,
0, 1). In the alternating game, a strategy called Firm-but-Fair3,

Fig. 2 A characterization of partners among the memory-1 strategies. Within the class of memory-1 strategies, we provide an overview of the strategies
that sustain full cooperation in a Nash equilibrium. The respective strategies are called partner strategies, or partners18. a For the simultaneous game
without errors, partners have been first described by Akin34,35 (he calls them “good strategies”). Akin’s approach has been extended by Stewart and
Plotkin31 to describe all memory-1 Nash equilibria of the simultaneous game. In the absence of errors, none of these strategies is evolutionarily stable55,57.
Instead, one can always find neutral mutant strategies which act as a stepping stone out of equilibrium58. b For the alternating game without errors, Eq. (2)
provides a full characterization of all partner strategies. Cooperation is maintained by the same strategies as in the simultaneous game. c Despite decades
of research, the exact set of partner strategies for the simultaneous game with errors is not known. However, there are at least two instances of partner
strategies, GTFT6,49, and Win-Stay Lose-Shift, WSLS42,53. For repeated games with errors, evolutionary stability is generally feasible56. In particular, WSLS
is evolutionarily stable if the benefit to cost ratio is sufficiently large and if errors are sufficiently rare40. d For the alternating game with errors, we
characterize all partner strategies in Eq. (5). None of them is deterministic. As a result, none of them is evolutionarily stable (see Supplementary
Information for details).
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defined by FBF= (1, 0, 1, 1) and also referred to as Forgiver27, has
been successful in evolutionary competitions. Out of these
examples, ALLD and TFT are reactive, whereas WSLS and FBF
are not. We say a strategy is deterministic if each conditional
cooperation probability is either zero or one. In particular, all of the
above examples are deterministic. Otherwise, we call the strategy
stochastic.

Note that our analysis includes the possibility that players
sometimes make errors. That is, when a player decides to
cooperate, there is some probability ε that the player defects by
mistake. Conversely, a player who intends to defect may
cooperate with the same probability. We refer to the case of
ε= 0 as the game without errors, and to the case of ε > 0 as the
game with errors. We note that even a strategy that is
deterministic becomes fully stochastic in the game with errors
because in that case, a player’s effective cooperation probability is
always between ε and 1− ε.

Considering memory-1 strategies is useful for two reasons. First,
such strategies are straightforward to interpret, and the respective
conditional probabilities can be easily inferred from experiments29.
Second, when both players use memory-1 strategies, their average
payoffs are simple to compute (see also Methods). To this end,
suppose player 1 uses the strategy p and player 2 adopts strategy q.
By representing the game as a Markov chain, we can compute the
stationary distribution v= (vCC, vCD, vDC, vDD). The entries of this
stationary distribution give the probabilities of observing each of
the four possible combinations of the players’ actions over the
course of the game. Based on this stationary distribution, we define
player 1’s payoff as π(p, q)= (vCC+ vDC)b− (vCC+ vCD)c, and
similarly for player 2. While the baseline scenario focuses on
memory-1 strategies, our results are more general. For example,
when we describe which memory-1 strategies are Nash equilibria
in the following, co-players are allowed to deviate to strategies with
arbitrarily long (but finite) memory. Moreover, similar approaches
can also be used to explore the evolutionary dynamics of memory-
2 strategies, as we will discuss later.

A recipe for identifying Nash equilibria for alternating games.
To predict which memory-1 strategies evolve in the alternating
game, we first characterize which of them are Nash equilibria. In
the following, we refer to a strategy q as a Nash equilibrium if
π(q, q) ≥ π(p, q) for all alternative memory-1 strategies p (for
stronger results, see Supplementary Note 2). That is, against a co-
player who adopts the Nash equilibrium strategy q, a player has
no incentive to choose any different memory-1 strategy. The

notion of Nash equilibrium is closely related to evolutionary
robustness30. In a population of size N, a resident strategy q is
called evolutionary robust if no mutant strategy p has a fixation
probability larger than neutral, 1/N. When selection is sufficiently
strong, strategies are evolutionary robust if and only if they are
Nash equilibria31.

Verifying that a given strategy q is a Nash equilibrium is not
straightforward. In principle, this requires us to compare its
payoff to the payoff of all possible mutant strategies p, taken from
the uncountable set of all memory-1 strategies. However, for
alternating games, it is possible to simplify the task in two steps
(see Supplementary Note 2 for details). The first step is to show
that it is sufficient to compare q to all reactive strategies, a
strategy set of a lower dimension. The intuition for this result is as
follows. Even if player 1 starts out with an arbitrary memory-1
strategy p, it is always possible to find an associated reactive
strategy ~p that yields the same stationary distribution and the
same payoff against q (Fig. 3). That is, to find the best response to
a strategy that remembers both players’ last moves, it is sufficient
to explore all strategies that only remember the co-player’s last
move. In particular, not only is there no advantage of having a
strictly larger memory than the opponent, as shown by Press and
Dyson for simultaneous games39. A player can afford to
remember strictly less in the alternating game.

The second step is to show that we do not need to consider all
reactive strategies to find the best response against q. Instead, it
suffices to consider all deterministic reactive strategies. By
combining these two steps, it becomes straightforward to check
whether a given memory-1 strategy is a Nash equilibrium. We
only need to compare its payoff against itself to the four payoffs
that can be achieved by deviating to Always Defect (ALLD),
Always Cooperate (ALLC), Tit-for-Tat (TFT), or Anti-Tit-for-Tat
(ATFT).

Equilibria in alternating games without errors. Using the above
recipe, we first explore which memory-1 strategies can sustain full
cooperation in games without errors (see Supplementary Note 2
for all derivations). To this end, we call a memory-1 strategy a
partner32,33 if (i) it is fully cooperative against itself, and (ii) if it is
a Nash equilibrium (such strategies are referred to as ‘good’ by
Akin34–36). We find that partners are exactly those memory-1
strategies q for which the following three conditions hold,

qCC ¼ 1; qCD ≤ 1"
c

b " c
qDD; qCD ≤ 1"

c
b
qDC: ð2Þ

Fig. 3 In alternating games, individuals can afford to remember less than their opponent. We prove the following result: if two memory-1 players
interact, any of the players can switch to a simpler reactive strategy (that only depends on the co-player’s previous action) without changing the resulting
payoffs. Here, we illustrate this result for player 1. a Initially, both players use memory-1 strategies. That is, a player’s cooperation probability depends on
the most recent decision of each player. There are four conditional cooperation probabilities. b The strategies determine how players interact in the
alternating game. c Based on the strategies, we can compute how often we are to observe each pairwise outcome over the course of the game by
calculating the game’s stationary distribution. d Based on the stationary distribution, and on player 1’s memory-1 strategy, we can compute an associated
reactive strategy. This reactive strategy only consists of two conditional cooperation probabilities. They determine what to do if the co-player cooperated
(or defected) in the previous round. The cooperation probabilities can be calculated as a weighted average of the respective memory-1 strategy’s
cooperation probabilities. The resulting reactive strategy for player 1 yields the same outcome distribution against player 2 as the original memory-1
strategy. We note that for this result, the assumption of alternating moves is crucial. In the simultaneous game, the respectively defined reactive strategy
does not yield the same outcome distribution against player 2 as the original memory-1 strategy (see Supplementary Information).
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The first condition is needed to ensure that the strategy is fully
cooperative against itself. The other two conditions restrict how
cooperative a player is allowed to be after having been exploited
by the co-player. If these last two conditions are violated, the
strategy q can either be invaded by ALLD or ATFT. Together, the
three requirements in (2) define a three-dimensional polyhedron
within the space of all memory-1 strategies (Fig. 4a). The volume
of this polyhedron increases with the benefit to cost ratio b/c.
While the polyhedron never contains ALLC, it always contains
the conditionally cooperative strategies TFT and GRIM (for these
two strategies, we additionally require the respective players to
cooperate in the very first round to ensure payoffs are well-
defined, see Supplementary Information). Moreover, for b ≥ 2c,
the polyhedron contains WSLS and FBF (independent of the
outcome of the first round).

Similarly, we can also identify all Nash equilibria where the
players mutually defect. We refer to the respective strategies as
defectors. We obtain the following necessary and sufficient
conditions,

qDD ¼ 0; qDC ≤
c
b
ð1 " qCDÞ; qDC ≤

c
b " c

ð1 " qCCÞ: ð3Þ

Again, the first equation ensures that two players with the
respective strategy end up mutually defecting against each other.
The other two conditions ensure that the strategy is comparably
unresponsive towards a co-player who tries to initiate coopera-
tion. Similar to before, the three conditions define a three-
dimensional polyhedron (Supplementary Fig. 2a). The set of
defectors is non-empty for all parameter values, and it always
contains the strategy ALLD.

Finally, we identify a third class of Nash equilibria, referred to
as equalizers43. As in the simultaneous game39, equalizers are
strategies that unilaterally control the co-player’s payoff. If one

player adopts an equalizer strategy, the co-player’s payoff is fixed,
independent of the co-player’s strategy44–48. In the alternating
game, these strategies are characterized by

qCD ¼
b qCC " c ð1 þ qDDÞ

b" c
; qDC ¼

b qDD þ cð1 " qCCÞ
b" c

: ð4Þ

When both players adopt an equalizer strategy, neither player has
anything to gain from deviating; the resulting outcome is a Nash
equilibrium.

We also show a converse result: If a memory-1 strategy for the
alternating game is a Nash equilibrium, then it either needs to be
a partner, a defector, or an equalizer. Remarkably, the same three
strategy classes also arise as Nash equilibria of the simultaneous
game31. Even the algebraic conditions for being a partner,
defector, or equalizer coincide (however, the existing proof for the
simultaneous game31 is somewhat more intricate than the proof
for the alternating game that we provide in Supplementary
Note 4). There is, however, one difference. In the simultaneous
game, there is a fourth class of Nash equilibria, referred to as
‘alternators’31. Alternators cooperate in one round, only to defect
in the next. In Supplementary Note 2, we show that such patterns
of behavior cannot emerge among memory-1 players in the
alternating game.

Equilibria in alternating games with errors. Next, we explore
how the Nash equilibria change when we introduce errors. In the
following, we discuss the case of partner strategies; the analogous
results for defectors and equalizers are derived in Supplementary
Note 2. For partner strategies, we find that errors impose addi-
tional constraints. First, partners only exist when errors are suf-
ficiently rare, ε< 1

2 1" c
b

! "
. Second, the respective conditions are

Fig. 4 Partner strategies in alternating games with and without errors. Partner strategies sustain cooperation in a Nash equilibrium. All such strategies
are required to cooperate after mutual cooperation, such that the respective cooperation probability qCC is equal to one. a In the absence of errors, the
remaining three cooperation probabilities can be chosen arbitrarily, subject to the constraints in Eq. (2). The resulting set of partner strategies takes the
shape of a polyhedron. b In the presence of errors, this polyhedron degenerates to a single line segment. This line segment comprises all strategies
between Generous Tit-for-Tat (GTFT) and Stochastic Firm-but-Fair (SFBF). c, d We compare these equilibrium results to evolutionary simulations. To this
end, we record all strategies that emerge over the course of the simulation. Here, we plot the probability distribution of those strategies that yield at least
80% cooperation against themselves. Without errors, the probability distributions for qCD, qDC, qDD are comparably flat. With errors, players tend to
cooperate if they exploited their opponent in the previous round, qDC≈ 1. Moreover, they cooperate with some intermediate probability after mutual
defection, qDD≈ 2/3. Both effects are in line with previous simulation studies25,26, and they confirm the theory. Simulations are run for b/c= 3, and ε= 0
or ε= 0.02. For the other parameter values and further details on the simulations, see Methods. Source data are provided as a Source Data file.
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now considerably more restrictive,

qCC ¼ qDC ¼ 1; qCD ≤ 1 "
c

ð1 " 2εÞb
;

qDD ¼
ð1 " 2εÞ ðb þ εc qCDÞ " c

ð1 " 2εÞ ðb þ εcÞ
:

ð5Þ

In particular, if the co-player cooperated in the previous round,
partners are strictly required to cooperate in the next round,
independent of their own previous action (because now pDC= 1).
If the co-player defected, partners need to cooperate with a well-
defined probability, as defined by the last two conditions in (5).
The last condition guarantees that neither ALLC nor TFT has a
selective advantage against q. In the game without errors, this
requirement is satisfied automatically. There, all strategies with
qCC= 1 yield the full cooperation payoff b− c against each other.
In the game with errors, however, such strategies are no longer
neutral. Instead, they differ in how quickly they are able to restore
cooperation after an error, and to which extent they are able to
capitalize on their co-players’ mistakes. Noisy environments thus
impose additional constraints on self-cooperative strategies to be
stable.

As a result of these additional constraints, the three-
dimensional polyhedron degenerates to a one-dimensional line
segment (Fig. 4b). On one end of this line segment, there is
Generous Tit-for-Tat, which also arises in the simultaneous
game6,49,

GTFT ¼ 1 ; 1 "
c

ð1 " 2εÞb
; 1 ; 1 "

c
ð1 " 2εÞb

# $
ð6Þ

On the other end of this line segment, we find a strategy that
resembles the main characteristics of Firm-but-Fair3; we thus
refer to this strategy as Stochastic Firm But Fair,

SFBF ¼ 1; 0; 1;
ð1 " 2εÞb " c

ð1 " 2εÞðb þ εcÞ

# $
ð7Þ

Behaviors similar to Stochastic Firm-but-Fair (SFBF) have been
observed in early simulations of alternating games25,26. There, it
was found that evolutionary trajectories often lead to strategies
that are deterministic, except that they randomize after mutual
defection. Our results provide an analytical justification: SFBF is
the only such strategy that is a Nash equilibrium.

The above conditions in (5) provide a complete characteriza-
tion of all partner strategies in the alternating game with errors.
Despite decades of research, an analogous characterization for the
simultaneous game is not yet available (Fig. 2). However, it is
known that particular strategies, most importantly WSLS, can be
evolutionarily stable in the presence of noise40. That is, in the
simultaneous game, cooperation can be sustained with a simple
deterministic strategy if b > 2c. In contrast, conditions (5) imply
that no such deterministic strategy is available in the alternating
game. Moreover, while the partner strategies characterized by (5)
are Nash equilibria, we show in the Supplementary Information
that they all are vulnerable to neutral invasion by either ALLC or
TFT (in fact by all strategies with qCC= qDC= 1). These results
suggest that cooperation can still evolve in alternating games, but
it may be less robust than in the simultaneous game.

Evolutionary dynamics of alternating games. In order to test
these equilibrium predictions, we next explore which behaviors
emerge when the players’ strategies are subject to evolution. To
this end, we consider a population of N players. Each member of
the population is equipped with a memory-1 strategy. They
obtain payoffs by interacting with all other population members.
To model the spread of successful strategies, we assume indivi-
duals with high payoffs are imitated more often50 (or

equivalently, such individuals produce more offspring51). In
addition, new strategies are introduced through random
exploration (or equivalently, through mutations). These random
strategies are uniformly taken from the space of all memory-1
strategies. We capture the resulting dynamics with computer
simulations. For details, see Methods.

First, we explore the evolutionary dynamics for fixed game
parameters. We record which strategies the players use over the
course of evolution to sustain cooperation. In Fig. 4, we represent
those strategies that yield a cooperation rate against themselves of
at least 80%; other threshold values lead to similar conclusions.
We call these strategies “self-cooperative”. By definition, players
with these strategies are likely to cooperate after mutual
cooperation. Here, we are thus interested in how they react
when either one or both players defected. Without errors, the
respective conditional cooperation probabilities show quite some
variation. As a result, the distributions in Fig. 4c are comparably
flat. Overall, players act in such a way that the partner conditions
(2) are satisfied, but they show no preference for a particular
partner strategy. Once we allow for errors, the evolving strategies
change (Fig. 4d). Players tend to always cooperate if the co-player
did so in the previous round, with qCC ≈ qDC ≈ 1. Moreover, after
mutual defection, they cooperate with some strictly positive
probability. Both patterns are predicted by our equilibrium
conditions (5). We find a similar match between static theory and
evolutionary simulations for defectors, or when we explore
evolution in the simultaneous game (Supplementary Figs. 1–3).

In a next step, we compare the dynamics of the alternating and
the simultaneous game across different parameter values. To this
end, we systematically vary the benefit of cooperation, the
population size, the selection strength, and the mutation rate
(Fig. 5). In games without errors, we observe hardly any
difference between the alternating and the simultaneous game.
Both games yield almost identical cooperation rates over time,
and these cooperation rates are similarly affected by parameter
changes. A difference between the two games only becomes
apparent when players need to cope with errors. Here, the
simultaneous game leads to systematically higher cooperation
rates than the alternating game. This difference is most visible for
intermediate benefit-to-cost ratios and intermediate error rates, as
one may expect: For small benefits and frequent errors,
cooperation evolves in neither game, whereas for large benefits
and rare errors, cooperation evolves in both games (Supplemen-
tary Fig. 4).

Evolutionary results beyond the baseline scenario. Our baseline
scenario represents an idealized model of alternating interactions.
It assumes (i) the game is infinitely repeated, (ii) players move in
a strictly alternating fashion, (iii) games take place in a well-
mixed population, and (iv) players use memory-1 strategies. In
the following, we use simulations to explore the effect of each of
these assumptions in turn. Here, we briefly summarize the
respective results. For an exact description of the models, and for
a more detailed discussion of the results, we refer to Supple-
mentary Note 3.

We start by considering games with finitely many rounds. To
incorporate a finite game length, we assume that each time both
players have made a decision, the game continues with a constant
probability δ. Figure 6a–c shows the respective evolutionary
results for δ= 0.96 (such that games last for 25 rounds on
average). We observe similar results as in the infinitely repeated
game: The simultaneous game leads to more cooperation (Fig. 6a);
moreover, if players cooperate, their strategies exhibit the main
characteristics of WSLS in the simultaneous game, and of SFBF
and GTFT in the alternating game (Fig. 6b). Further simulations
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suggest that these qualitative results hold when players interact
for at least ten rounds (Supplementary Fig. 5). When interactions
are shorter, cooperation is unlikely to evolve at all (Fig. 6c).

In the next step, we explore irregular alternation patterns. To
this end, we assume that every time a player has made a decision,
with probability s it is the other player who moves next. We refer
to s as the game’s switching probability. For s= 1, we recover the
baseline scenario, in which players strictly alternate. For s= 1/2,
the player to move next is determined randomly. Simulations
suggest that in both cases, players again use strategies akin to
GTFT and SFBF to sustain cooperation (Fig. 6e). However, the
robustness of the strategies depends on the switching probability.
In particular, mutual cooperation is most likely to evolve when
players alternate regularly (Fig. 6f, Supplementary Fig. 6).

To explore the effect of population structure, we follow the
framework of Brauchli et al.52. Instead of well-mixed populations,
players are now arranged on a two-dimensional lattice. They use
memory-1 strategies to engage in pairwise interactions with each
of their neighbors. For the simultaneous game, we recover the
main results of Brauchli et al.52: population structure can further
enhance cooperation, and it makes it more likely that strategies
similar to WSLS evolve (Fig. 6g–i). For the alternating game, we
observe that cooperation remains the most abundant outcome,
but the spatial structure does not necessarily result in homo-
geneous populations any longer. Instead, in some simulations, we
find cooperative and non-cooperative strategies to stably coexist
(one particular instance is shown in Fig. 6h).

Finally, we also analyzed the impact of a larger memory.
Exploring the dynamics among general memory-k strategies is
not straightforward, as the strategy space increases rapidly. For
instance, while there are only 16 pure memory-1 strategies, there

are 65,536 memory-2 strategies and more than 1019 memory-3
strategies41. We thus confine ourselves to pure memory-2
strategies in the following. In a first step, we explored which of
these strategies are evolutionarily stable, see Supplementary
Fig. 7a. For the simultaneous game, we find many such strategies,
including several strategies with high cooperation rates. In the
alternating game, we only find one strategy that is evolutionarily
stable for a wide range of parameters, ALLD. Nevertheless, with
respect to the evolving cooperation rates, stochastic evolutionary
trajectories hardly show any difference between alternating and
simultaneous games. The two games differ, however, in terms of
the strategies that evolve, and in how robust these strategies are
(Supplementary Fig. 7b–e).

Discussion
An overwhelming majority of past research on reciprocity deals
with repeated games where individuals simultaneously decide
whether to cooperate3,18. In contrast, most natural occurrences of
reciprocity require asynchronous acts of giving. Cooperation
routinely takes the form of assisting a peer, providing a gift, or
taking the lead in a joint endeavor22–24. In such examples,
simultaneous cooperation can be unfeasible, undesirable, or
unnecessary. Herein, we have thus explored which strategies arise
in alternating games where individuals make their decisions in
turns. In such games, one individual’s cooperation is reciprocated
not immediately, but at some point in the future.

To explore the dynamics of cooperation in alternating games,
we first describe all Nash equilibria among the memory-1 stra-
tegies. Memory-1 strategies are classical tools that have been used
to describe the evolutionary dynamics of repeated games for
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Fig. 5 Comparing evolution in the alternating and the simultaneous game. To compare the two game versions, we have run additional evolutionary
simulations. We systematically vary the benefit of cooperation, the population size, the selection strength, and the mutation rate. In addition, we vary how
likely players make errors. Either they make no errors at all (ε= 0), or they make errors at some intermediate rate (ε= 0.02). a In the absence of errors,
there is virtually no difference between the simultaneous and the alternating game. Both games yield the same cooperation rates, and they respond to
parameter changes in the same way. For the given baseline parameters, cooperation is favored for large benefits of cooperation, population sizes, and
selection strengths. It is disfavored for intermediate and large mutation rates. b With errors, the cooperation rates in the alternating game are
systematically below the simultaneous game. The lower cooperation rates are related to our analytical result that no cooperative memory-1 strategy in the
alternating game is evolutionarily stable. In contrast, in the simultaneous game with errors,WSLS can maintain cooperation42,53, it is evolutionarily stable41,
and it readily evolves in evolutionary simulations (Supplementary Fig. 1). As baseline parameters we use a benefit of cooperation b= 3, population size
N= 100, selection strength β= 1, and the limit of rare mutations μ→ 065,66. Source data are provided as a Source Data file.
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several decades25,42,53. However, most of the early work on
memory-1 strategies was restricted to evolutionary simulations.
Only with the pioneering work of Press and Dyson39 and
others30–38, better mathematical techniques have become avail-
able. Using these techniques, it has become possible to describe all
Nash equilibria of the infinitely repeated simultaneous game

without errors31. Herein, we make similar progress for the
alternating game, both for the case with and without errors (for
the simultaneous game with errors, a complete characterization of
the Nash equilibria remains an open problem, see Fig. 2).

Our results suggest that there are both unexpected parallels and
important differences between simultaneous and alternating

Fig. 6 Robustness of evolutionary results. We have explored the robustness of our results with various model extensions. Here, we display results for
three of them, illustrating the impact of finitely repeated games, of irregular alternating patterns, and of population structure. a–c The baseline model
assumes infinitely repeated games; here we show simulations for games with a finite expected length. If there are sufficiently many rounds, the
simultaneous game again leads to more cooperation than the alternating game, and the evolving strategies are largely similar to the ones observed in the
baseline model. d–f The baseline model assumes that players move in a strictly alternating fashion. Instead, here we assume that after each player’s move,
the other player moves with some switching probability s. The case s= 1 corresponds to strict alternation, whereas s= 1/2 represents a case in which the
next player to move is completely random. We observe that irregular alternation patterns hardly affect which strategies players use to cooperate. However,
it affects the robustness of these strategies. Overall, cooperation is most likely to evolve under strict alternation. g–i Finally, instead of well-mixed
populations, we consider games on a lattice. For the given parameter values, we observe that simultaneous games eventually lead to homogeneous
cooperative populations. While this outcome is also possible for alternating games, some simulations also lead to the coexistence of cooperators and
defectors (shown here in panel (h)). The evolving self-cooperative strategies are similar to the strategies that evolve in the baseline model. For a detailed
description of these simulations, see Methods and Supplementary Information. Source data for panels a–f, i are provided as a Source Data file.
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games. The parallels arise when individuals do not make errors.
Here, the two models of reciprocity make the same predictions
about the feasibility of cooperation. Cooperation evolves in the
same environments, and it can be maintained using the same
strategies. However, once individuals make mistakes, the pre-
dictions of the two models diverge. First, the two models require
different kinds of strategies to maintain cooperation. In the
simultaneous game, cooperation can be sustained with the
deterministic memory-1 strategy Win-Stay Lose-Shift42,53. Indi-
viduals with that strategy simply reiterate their previous behavior
if it was successful, and they switch their behavior otherwise. In
contrast, in the alternating game, no simple deterministic rules
for cooperation exist. Although there are still infinitely many
memory-1 strategies that can maintain cooperation, all of them
require individuals to randomize occasionally. One example of
such a strategy for alternating games is SFBF. Individuals with
this strategy always reciprocate a co-player’s cooperation, never
tolerate exploitation, and cooperate with some intermediate
probability if both players defected. Similar behaviors have been
observed in earlier simulations25,26. Our results provide a theo-
retical underpinning: SFBF is the unique memory-1 strategy that
can sustain cooperation while retaliating against unconditional
defectors in the strongest possible way.

The simultaneous game and the alternating game also differ in
how stable cooperation is in evolving populations. In the simul-
taneous game, the evolution of cooperation is hardly affected by
errors, provided the error rate is below a certain threshold (Fig. 5,
Supplementary Fig. 4). In some instances, errors can even
enhance cooperation54. This body of work is based on the insight
that evolutionarily stable cooperation is impossible in simulta-
neous games without errors55–59. For any cooperative resident, it
is always possible to find neutral mutant strategies that eventually
lead to the demise of cooperation. However, once individuals
occasionally commit errors, a strategy like WSLS is no longer
neutral with respect to other cooperative strategies; it becomes
evolutionarily stable40,56. The situation is different in alternating
games. Even in the presence of rare errors, strategies like SFBF
remain vulnerable. They can be invaded by unconditional coop-
erators or by any other strategy that fully reciprocates a co-
player’s cooperation.

Despite these differences in the stability of their main strate-
gies, evolving cooperation rates in the simultaneous and the
alternating game are often surprisingly similar. To interpret these
results, we note that when evolution is stochastic and takes place
in finite populations, no strategy persists indefinitely. Even evo-
lutionarily stable strategies are invaded eventually. As a result, the
overall abundance of cooperation is not only determined by the
stability of any given strategy. Instead, it depends on additional
aspects, such as the time it takes cooperative strategies to reappear
when they are invaded. The relative importance of these
different aspects depends on the details of the considered evo-
lutionary process. To further illustrate these observations, we
have run additional simulations for memory-1 players with local
mutations60 (see Supplementary Note 3). Because evolutionary
stability considerations are less relevant when mutations are local,
we observe that the cooperation rates of the alternating and the
simultaneous game become more similar (Supplementary Fig. 8).

Cooperation is defined as a behavior where individuals pay a
cost in order to increase the payoff or fitness of someone else2.
When individuals interact repeatedly, such cooperative interac-
tions can be maintained by reciprocity. Here, we have argued that
in many examples, reciprocity arises as a series of asynchronous
acts of cooperation. Most often, people do favors not to be
rewarded immediately, but to request similar favors in the future.
Such consecutive acts of cooperation also appear to be at work
when vampire bats20, sticklebacks23, ibis24, tree swallows61, or

macaques62 engage in reciprocity. We have shown that mutual
cooperation is still possible in such alternating exchanges. But
compared to the predominant model of reciprocity in simulta-
neous games, cooperation requires different kinds of strategies,
and it is more volatile.

Methods
Calculation of payoffs. When two players with memory-1 strategies interact, their
expected payoffs can be computed by representing the game as a Markov chain3.
To this end, suppose the first player’s strategy is p= (pCC, pCD, pDC, pDD), and the
second player’s strategy is q= (qCC, qCD, qDC, qDD). Depending on the most recent
actions of the two players (which can be either CC, CD, DC, or DD), we can
compute how likely we are to observe each of the four outcomes in the following
round. For the alternating game, we obtain the following transition matrix25,

MA ¼

pCCqCC pCCð1 " qCCÞ ð1 " pCCÞqCD ð1 " pCCÞð1 " qCDÞ
pCDqDC pCDð1 " qDCÞ ð1 " pCDÞqDD ð1 " pCDÞð1 " qDDÞ
pDCqCC pDCð1 " qCCÞ ð1 " pDCÞqCD ð1 " pDCÞð1 " qCDÞ
pDDqDC pDDð1 " qDCÞ ð1 " pDDÞqDD ð1 " pDDÞð1 " qDDÞ

0

BBB@

1

CCCA:

ð8Þ

Based on this transition matrix, we compute how often players observe each of the
four outcomes. To this end, we solve the equation for the stationary distribution,
v= vMA. In most cases, the solution of this equation is unique. Uniqueness is
guaranteed, for example, when the players’ strategies p and q are fully stochastic, or
when the error rate is positive. In exceptional cases, however, the transition matrix
can allow for two or more stationary distributions. In that case, the outcome of the
game is still well-defined, after specifying how players act in the very first round.

Given the stationary distribution v= (vCC, vCD, vDC, vDD), we define the players’
payoffs as

π1 ¼ ðvCC þ vDCÞb" ðvCC þ vCDÞc;
π2 ¼ ðvCC þ vCDÞb" ðvCC þ vDCÞc:

ð9Þ

This definition implicitly assumes that the game is indefinitely repeated and that
future payoffs are not discounted. However, analogous formulas can be given in
case there is a constant continuation probability δ, or equivalently if future payoffs
are discounted by δ (see Supplementary Note 3).

We compare our results for the alternating game with the corresponding results
for the standard repeated prisoner’s dilemma, where players decide simultaneously.
Payoffs for the simultaneous game can be calculated in the same way as before.
Only the transition matrix needs to be replaced by3

MS ¼

pCCqCC pCCð1 " qCCÞ ð1 " pCCÞqCC ð1 " pCCÞð1 " qCCÞ
pCDqDC pCDð1 " qDCÞ ð1 " pCDÞqDC ð1 " pCDÞð1 " qDCÞ
pDCqCD pDCð1 " qCDÞ ð1 " pDCÞqCD ð1 " pDCÞð1 " qCDÞ
pDDqDD pDDð1 " qDDÞ ð1 " pDDÞqDD ð1 " pDDÞð1 " qDDÞ

0

BBB@

1

CCCA:

ð10Þ

Although the two matrices share many similarities, the resulting dynamics can be
very different. For example, if the two players use TFT, then the matrix MS allows
for three invariant sets (corresponding to mutual cooperation, mutual defection,
and alternating cooperation). However, the respective matrix MA only allows for
the first two invariant sets25. More generally, MS allows for equilibria where players
cooperate in one round but defect in the next round. Such equilibria are impossible
for MA (see Supplementary Note 2).

We sometimes assume players commit errors. We incorporate errors by
assuming that with probability ε, a player who intends to cooperate defects by
mistake. Analogously, a player who wishes to defect cooperates instead with the
same probability. Such errors are straightforward to incorporate into the model.
For ε > 0, a player’s strategy p translates into an effective strategy pε≔ (1− ε)
p+ ε(1− p). To compute the payoffs of strategy p against strategy q in the
presence of errors, we apply the formulas (8)–(10) to the strategies pε and qε.

Evolutionary dynamics. In the following, we describe the evolutionary process for
the baseline scenario. For the various model extensions (Fig. 6, Supplementary
Fig. 5–Supplementary Fig. 8), we use appropriately adapted versions of this process,
as described in more detail in Supplementary Note 3. To model how successful
strategies spread in well-mixed populations, we use a pairwise comparison
process50. This process considers a population of constant size N. Initially, all
population members are unconditional defectors. Each player derives a payoff by
interacting with all other population members; for each pairwise interaction,
payoffs are given by Eq. (9).

To model how strategies with a high payoff spread within a population, we
consider a model in discrete time. In each time step, one player is chosen from the
population at random. This player is then given an opportunity to revise its
strategy. The player can do so in two ways. First, with probability μ (the mutation
rate), the player may engage in random strategy exploration. In this case, the player
discards its strategy and samples a new strategy uniformly at random from the set
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of all memory-1 strategies. Second, with probability 1− μ, the player considers
imitating one of its peers. In this case, the player selects a random role model from
the population. If the role model’s payoff is πR and the focal player’s payoff is πF,
then imitation occurs with a probability given by the Fermi function63

ρ ¼
1

1þ exp "βðπR " πF Þ
% & : ð11Þ

If imitation occurs, the focal player discards its previous strategy and adopts the
role model’s strategy instead. In the formula for the imitation probability, the
parameter β ≥ 0 is called the strength of selection. It measures the extent to which
players are guided by payoff differences between the players’ strategies. For β= 0,
any payoff differences are irrelevant. The focal player adopts the role model’s
strategy with a probability of 1/2. As β becomes larger, payoff differences become
increasingly important. In the limiting case β→∞, imitation only occurs if the role
model’s payoff at least matches the focal player’s payoff.

Overall, the two mechanisms of random strategy exploration and directed
strategy imitation give rise to a stochastic process on the space of all population
compositions. For positive mutation rates, this process is ergodic. In particular, the
average cooperation rate (as a function of the number of time steps) converges, and
it is independent of the considered initial population. Herein, we have explored this
process with computer simulations. We have recorded which strategies the players
adapt over time and how often they cooperate on average. For most of these
simulations, we assume that mutations are sufficiently rare64. For those
simulations, we require mutant strategies to either fix in the population or to go
extinct before the next mutation occurs. Under this regime, the mutant’s fixation
probability can be computed explicitly9. This in turn allows us to simulate the
evolutionary dynamics more efficiently65,66.

Parameters and specific procedures used for the figures. For the simulations in
well-mixed populations, we used the following baseline parameters

Benefit of cooperation : b ¼ 3

Cost of cooperation : c ¼ 1

Population size : N ¼ 100

Selection strength : β ¼ 5 ðFig: 4; Supplementary Figures 1"3Þ and β ¼ 1 ðall other figuresÞ
Error rate : ε ¼ 0 ðwithout errorsÞ; or ε ¼ 0:02 ðwith errorsÞ
Mutation rate : μ ! 0:

ð12Þ

Changes in these parameters are systematically explored in Fig. 5 and Supple-
mentary Fig. 4. For Figs. 4, 5, and Supplementary Fig. 1–Supplementary Fig. 6, the
respective simulations are run for at least 107-time steps each (measured in a
number of introduced mutant strategies over the course of a simulation). For Fig. 6,
Supplementary Fig. 7, and Supplementary Fig. 8, simulations are run for a shorter
time (as illustrated in the respective panels that illustrate the resulting dynamics).
However, here all results are obtained by averaging over 50–200 independent
simulations.

To report which strategies the players use to sustain cooperation (or defection),
we record all strategies that arise during a simulation that have a cooperation rate
against themselves of at least 80% (in the case of self-cooperators), or a cooperation
rate of less than 20% (in the case of self-defectors). In Fig. 4, Supplementary
Fig. 1–Supplementary Fig. 3, and Supplementary Fig. 5, we show the marginal
distributions of all strategies that we have obtained in this way. For these
distributions, each strategy is weighted by how long the strategy has been present in
the population. In Fig. 6, Supplementary Fig. 7, and Supplementary Fig. 8, we
represent the self-cooperative strategies by computing the average of the respective
marginal distributions. In some cases (Fig. 6e, Supplementary Fig. 7,
Supplementary Fig. 8), we also report how robust self-cooperative strategies are on
average. To this end, we record for each self-cooperative resident strategy how
many mutants need to be introduced into the population until a mutant strategy
reaches fixation. We consider self-cooperative strategies that resist invasion by
many mutant strategies as more robust.

Finally, for the simulations for spatial populations (Fig. 6g–i), we closely follow
the setup of Brauchli et al.52. Here, we consider a population of size N= 2500.
Players are arranged on a 50 × 50 lattices with periodic boundary conditions.
Players use memory-1 strategies (initially they adopt the strategy ALLD). In every
generation, every player interacts in a pairwise game with each of its eight
immediate neighbors. After these interactions, all players are independently given
an opportunity to update their strategies. With probability μ= 0.002, an updating
player chooses a random strategy, uniformly taken from all memory-1 strategies
(global mutations). With probability 1− μ, the updating player adopts the strategy
of the neighbor with the highest payoff (but only if this neighbor’s payoff is better
than the focal player’s payoff). This elementary process is then repeated for 20,000
generations. Figure 6g, i shows averages across 50 independent simulations of the
process. Figure 6h illustrates two particular realizations.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data for Fig. 4, Fig. 5, Fig. 6a–f and i are provided with this paper. Moreover, the
raw data generated with the computer simulations, including the data that is necessary to
create all figures are available online67, at osf.io: https://doi.org/10.17605/osf.io/
v5hgd. Source data are provided with this paper.

Code availability
All simulations were performed with MATLAB_R2019b. The respective code is available
online67, at osf.io: https://doi.org/10.17605/osf.io/v5hgd.

Received: 15 January 2021; Accepted: 20 January 2022;

References
1. Trivers, R. L. The evolution of reciprocal altruism. Q. Rev. Biol. 46, 35–57

(1971).
2. Nowak, M. A. Five rules for the evolution of cooperation. Science 314,

1560–1563 (2006).
3. Sigmund, K. The Calculus of Selfishness (Princeton University Press,

Princeton, NJ, 2010).
4. Rapoport, A. & Chammah, A. M. Prisoner’s Dilemma (University of Michigan

Press, Ann Arbor, 1965).
5. Axelrod, R. The Evolution of Cooperation (Basic Books, New York, NY, 1984).
6. Nowak, M. A. & Sigmund, K. Tit for tat in heterogeneous populations. Nature

355, 250–253 (1992).
7. Szabó, G., Antal, T., Szabó, P. & Droz, M. Spatial evolutionary prisoner’s

dilemma game with three strategies and external constraints. Phys. Rev. E 62,
1095–1103 (2000).

8. Killingback, T. & Doebeli, M. The continuous Prisoner’s Dilemma and the
evolution of cooperation through reciprocal altruism with variable investment.
Am. Nat. 160, 421–438 (2002).

9. Nowak, M. A., Sasaki, A., Taylor, C. & Fudenberg, D. Emergence of
cooperation and evolutionary stability in finite populations. Nature 428,
646–650 (2004).

10. Doebeli, M. & Hauert, C. Models of cooperation based on the prisoner’s
dilemma and the snowdrift game. Ecol. Lett. 8, 748–766 (2005).

11. Szolnoki, A., Perc, M. & Szabó, G. Phase diagrams for three-strategy
evolutionary prisoner’s dilemma games on regular graphs. Phys. Rev. E 80,
056104 (2009).

12. García, J. & Traulsen, A. The structure of mutations and the evolution of
cooperation. PLoS ONE 7, e35287 (2012).

13. Grujic, J. et al. A comparative analysis of spatial prisoner’s dilemma
experiments: conditional cooperation and payoff irrelevance. Sci. Rep. 4, 4615
(2014).

14. Hilbe, C., Hagel, K. & Milinski, M. Asymmetric power boosts extortion in an
economic experiment. PLoS ONE 11, e0163867 (2016).

15. Reiter, J. G., Hilbe, C., Rand, D. G., Chatterjee, K. & Nowak, M. A. Crosstalk
in concurrent repeated games impedes direct reciprocity and requires stronger
levels of forgiveness. Nat. Commun. 9, 555 (2018).

16. Glynatsi, N. & Knight, V. A bibliometric study of research topics,
collaboration and centrality in the field of the Iterated Prisoner’s Dilemma.
Humanit. Soc. Sci. Commun. 8, 45 (2021).

17. Schmid, L., Chatterjee, K., Hilbe, C. & Nowak, M. A unified framework of
direct and indirect reciprocity. Nat. Hum. Behav. 5, 1292–1302 (2021).

18. Hilbe, C., Chatterjee, K. & Nowak, M. A. Partners and rivals in direct
reciprocity. Nat. Hum. Behav. 2, 469–477 (2018).

19. Melis, A. P. & Semmann, D. How is human cooperation different? Philos.
Trans. R. Soc. B 365, 2663–2674 (2010).

20. Wilkinson, G. S. Reciprocal food-sharing in the vampire bat. Nature 308,
181–184 (1984).

21. Bernheim, D. & Whinston, M. D. Multimarket contact and collusive behavior.
RAND J. Econ. 21, 1–26 (1990).

22. Jackson, M. O., Rodriguez-Barraquer, T. & Tan, X. Social capital and social
quilts: network patterns of favor exchange. Am. Econ. Rev. 102, 1857–1897
(2012).

23. Milinski, M. Tit For Tat in sticklebacks and the evolution of cooperation.
Nature 325, 433–435 (1987).

24. Voelkl, B. et al. Matching times of leading and following suggest cooperation
through direct reciprocity during V-formation flight in ibis. Proc. Natl Acad.
Sci. USA 112, 2115–2120 (2015).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28336-2

10 NATURE COMMUNICATIONS | ���������(2022)�13:737� | https://doi.org/10.1038/s41467-022-28336-2 | www.nature.com/naturecommunications



25. Nowak, M. A. & Sigmund, K. The alternating prisoner’s dilemma. J. Theor.
Biol. 168, 219–226 (1994).

26. Frean, M. R. The prisoner’s dilemma without synchrony. Proc. R. Soc. B 257,
75–79 (1994).

27. Zagorsky, B. M., Reiter, J. G., Chatterjee, K. & Nowak, M. A. Forgiver
triumphs in alternating prisoner’s dilemma. PLoS ONE 8, e80814 (2013).

28. McAvoy, A. & Hauert, C. Autocratic strategies for alternating games. Theor.
Popul. Biol. 113, 13–22 (2016).

29. Wedekind, C. & Milinski, M. Human cooperation in the simultaneous and the
alternating prisoner’s dilemma: pavlov versus generous tit-for-tat. Proc. Natl
Acad. Sci. USA 93, 2686–2689 (1996).

30. Stewart, A. J. & Plotkin, J. B. From extortion to generosity, evolution in the
iterated prisoner’s dilemma. Proc. Natl Acad. Sci. USA 110, 15348–15353 (2013).

31. Stewart, A. J. & Plotkin, J. B. Collapse of cooperation in evolving games. Proc.
Natl Acad. Sci. USA 111, 17558 – 17563 (2014).

32. Hilbe, C., Traulsen, A. & Sigmund, K. Partners or rivals? Strategies for the
iterated prisoner’s dilemma. Games Econ. Behav. 92, 41–52 (2015).

33. Donahue, K., Hauser, O., Nowak, M. & Hilbe, C. Evolving cooperation in
multichannel games. Nat. Commun. 11, 3885 (2020).

34. Akin, E. What you gotta know to play good in the iterated prisoner’s dilemma.
Games 6, 175–190 (2015).

35. Akin, E. The iterated prisoner’s dilemma: Good strategies and their dynamics.
in (ed Assani, I.) Ergodic Theory, Advances in Dynamics, 77–107 (de Gruyter,
Berlin, 2016).

36. Akin, E. Good strategies for the iterated prisoner’s dilemma: Smale vs.
Markov. J. Dyn. Games 4, 217–253 (2017).

37. McAvoy, A. & Nowak, M. A. Reactive learning strategies for iterated games.
Proc. R. Soc. A 475, 20180819 (2019).

38. Glynatsi, N. & Knight, V. Using a theory of mind to find best responses to
memory-one strategies. Sci. Rep. 10, 1–9 (2020).

39. Press, W. H. & Dyson, F. D. Iterated prisoner’s dilemma contains strategies
that dominate any evolutionary opponent. Proc. Natl Acad. Sci. USA 109,
10409–10413 (2012).

40. Lorberbaum, J. P., Bohning, D. E., Shastri, A. & Sine, L. E. Are there really no
evolutionarily stable strategies in the iterated prisoner’s dilemma? J. Theor.
Biol. 214, 155–169 (2002).

41. Hilbe, C., Martinez-Vaquero, L. A., Chatterjee, K. & Nowak, M. A. Memory-n
strategies of direct reciprocity. Proc. Natl Acad. Sci. USA 114, 4715–4720
(2017).

42. Nowak, M. A. & Sigmund, K. A strategy of win-stay, lose-shift that outperforms
tit-for-tat in the Prisoner’s Dilemma game. Nature 364, 56–58 (1993).

43. Boerlijst, M. C., Nowak, M. A. & Sigmund, K. Equal pay for all prisoners. Am.
Math. Mon. 104, 303–307 (1997).

44. Hilbe, C., Nowak, M. A. & Sigmund, K. The evolution of extortion in iterated
prisoner’s dilemma games. Proc. Natl Acad. Sci. USA 110, 6913–6918 (2013).

45. Hao, D., Rong, Z. & Zhou, T. Extortion under uncertainty: zero-determinant
strategies in noisy games. Phys. Rev. E 91, 052803 (2015).

46. McAvoy, A. & Hauert, C. Autocratic strategies for iterated games with
arbitrary action spaces. Proc. Natl Acad. Sci. USA 113, 3573–3578 (2016).

47. Ichinose, G. & Masuda, N. Zero-determinant strategies in finitely repeated
games. J. Theor. Biol. 438, 61–77 (2018).

48. Mamiya, A. & Ichinose, G. Zero-determinant strategies under observation
errors in repeated games. Phys. Rev. E 102, 032115 (2020).

49. Molander, P. The optimal level of generosity in a selfish, uncertain
environment. J. Confl. Resolut. 29, 611–618 (1985).

50. Traulsen, A., Pacheco, J. M. & Nowak, M. A. Pairwise comparison and
selection temperature in evolutionary game dynamics. J. Theor. Biol. 246,
522–529 (2007).

51. Wu, B., Bauer, B., Galla, T. & Traulsen, A. Fitness-based models and pairwise
comparison models of evolutionary games are typically different—even in
unstructured populations. N. J. Phys. 17, 023043 (2015).

52. Brauchli, K., Killingback, T. & Doebeli, M. Evolution of cooperation in
spatially structured populations. J. Theor. Biol. 200, 405–417 (1999).

53. Kraines, D. P. & Kraines, V. Y. Pavlov and the prisoner’s dilemma. Theory
Decis. 26, 47–79 (1989).

54. Zhang, H. Errors can increase cooperation in finite populations. Games Econ.
Behav. 107, 203–219 (2018).

55. Boyd, R. & Lorberbaum, J. No pure strategy is evolutionary stable in the
iterated prisoner’s dilemma game. Nature 327, 58–59 (1987).

56. Boyd, R. Mistakes allow evolutionary stability in the repeated prisoner’s
dilemma game. J. Theor. Biol. 136, 47–56 (1989).

57. Lorberbaum, J. M. D. No strategy is evolutionary stable in the repeated
prisoner’s dilemma. J. Theor. Biol. 168, 117–130 (1994).

58. García, J. & van Veelen, M. In and out of equilibrium I: evolution of strategies
in repeated games with discounting. J. Econ. Theory 161, 161–189 (2016).

59. García, J. & van Veelen, M. No strategy can win in the repeated prisoner’s
dilemma: linking game theory and computer simulations. Front. Robot. AI 5,
102 (2018).

60. Stewart, A. J. & Plotkin, J. B. The evolvability of cooperation under local and
non-local mutations. Games 6, 231–250 (2015).

61. Lombardo, M. P. Mutual restraint in tree swallows: a test of the tit for tat
model of reciprocity. Science 227, 1363–1365 (1985).

62. Muroyama, Y. Mutual reciprocity of grooming in female japanese macaques
(Macaca fuscata). Behaviour 119, 161–170 (1991).

63. Szabó, G. & Tőke, C. Evolutionary prisoner’s dilemma game on a square
lattice. Phys. Rev. E 58, 69–73 (1998).

64. Wu, B., Gokhale, C. S., Wang, L. & Traulsen, A. How small are small mutation
rates? J. Math. Biol. 64, 803–827 (2012).

65. Fudenberg, D. & Imhof, L. A. Imitation processes with small mutations. J.
Econ. Theory 131, 251–262 (2006).

66. Imhof, L. A. & Nowak, M. A. Stochastic evolutionary dynamics of direct
reciprocity. Proc. R. Soc. B 277, 463–468 (2010).

67. Park, P. S., Nowak, M. A. & Hilbe, C. Cooperation in alternating interactions
with memory constraints—source code and data. OSF https://doi.org/
10.17605/osf.io/v5hgd (2022).

Acknowledgements
P.S.P. is supported by the National Science Foundation through the Graduate Research
Fellowship Program (grant number DGE1745303), by the Centre for Effective Altruism
through the Global Priorities Fellowship, and by Harvard University through graduate
student fellowships. C.H. acknowledges generous funding by the Max Planck Society and
by the ERC Starting Grant E-DIRECT (850529).

Author contributions
P.S.P., M.A.N., and C.H: designed the research; P.S.P., M.A.N., and C.H: performed the
research; P.S.P., M.A.N., and C.H: wrote the paper.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-022-28336-2.

Correspondence and requests for materials should be addressed to Christian Hilbe.

Peer review information Nature Communications thanks Alexander Stewart, Claus
Wedekind, and the other, anonymous, reviewer(s) for their contribution to the peer
review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28336-2 ARTICLE

NATURE COMMUNICATIONS | ���������(2022)�13:737� | https://doi.org/10.1038/s41467-022-28336-2 | www.nature.com/naturecommunications 11


