Week 3. Static games with complete information II: Elimination of dominated strategies, Nash equilibrium

Exercise 1: Iterated elimination of dominated strategies I

Construct a 2-player game such that:

1. Both players have 3 actions.
2. The game cannot be solved by elimination of dominated strategies.
3. The game can be solved by iterated elimination of dominated strategies.

Exercise 2: Iterated elimination of dominated strategies II

Consider the following 3-players game. Here the first player chooses a row, the second player chooses a column, and the third player chooses a matrix.

Can you solve this game using iterated elimination of strategies?

Matrix 1
Col 1 Col 2
Row 1
Row 2 $\left(\begin{array}{ll}(2,1,6) & (3,2,3) \\ (0,4,0) & (1,0,0)\end{array}\right)$

Matrix 2
Col $1 \quad$ Col 2
Row 1
Row 2 $\left(\begin{array}{ll}(1,-1,4) & (2,1,4) \\ (-1,4,0) & (0,0,3)\end{array}\right)$

Exercise 3: Nash equilibrium vs dominance solvability

Prove the following statements:
(i) If a pure strategy $s_{j}^{(i)}$ is dominated by a pure strategy $s_{k}^{(i)}$ and $\sigma=\left(\sigma^{(1)}, \ldots, \sigma^{(n)}\right)$ is a Nash equilibrium, then $\sigma_{j}^{(i)}=0$.
(ii) If the game is dominance solvable such that the unique outcome of iterated elimination of dominated strategies is some pure strategy $s=\left(s^{(1)}, \ldots, s^{(n)}\right)$, then s is a Nash equilibrium.
[Suggestion: One could use contradiction to prove the above statements. For example, for (i) assume that these was a Nash equilibrium with $\sigma_{j}^{(i)}>0$, and show that this would yield some contradiction.]

Exercise 4: Best responses

Consider the stag hunt game:
player 2
$\left.\begin{array}{lcc} & & \text { Stag } \\ \text { player 1 } & \text { Hare } \\ \text { Stag } \\ & \begin{array}{c}(10,10) \\ (0,6) \\ (6,0)\end{array} & (6,6)\end{array}\right)$

Suppose player 1 uses the mixed strategy $(x, 1-x)$, where x is player 1's probability to Stag. Similarly, player 2's strategy is $(y, 1-y)$.
(i) For given x, y compute the players' payoffs $\pi^{(1)}(x, y), \pi^{(2)}(x, y)$ (see Remarks 2.6, 2.7).
(ii) For a given y compute player 1's best response $(\operatorname{BR}(y))$. In particular, show that there is some y^{*} such that all $x \in[0,1]$ are a best response.
(iii) Draw the two best response correspondences $\mathrm{BR}(x), \mathrm{BR}(y)$ into a $x-y$ plane. How often do they intersect? What does it mean if they intersect?

