Week 4. Static games with complete information III: Nash equilibria

Exercise 1: Nash equilibrium vs dominance solvability

Prove the following statements:

- (i) If a pure strategy $s_j^{(i)}$ is dominated by a pure strategy $s_k^{(i)}$ and $\sigma = (\sigma^{(1)}, \ldots, \sigma^{(n)})$ is a Nash equilibrium, then $\sigma_i^{(i)} = 0$.
- (ii) If the game is dominance solvable such that the unique outcome of iterated elimination of dominated strategies is some pure strategy $s = (s^{(1)}, \ldots, s^{(n)})$, then s is a Nash equilibrium.

[Suggestion: One could use contradiction to prove the above statements. For example, for (i) assume that these was a Nash equilibrium with $\sigma_i^{(i)} > 0$, and show that this would yield some contradiction.]

Exercise 2: Best responses

Consider the stag hunt game:

player 2

		Stag	Hare
player 1	Stag	(10, 10)	(0,6)
	Hare	(6,0)	(6,6)

Suppose player 1 uses the mixed strategy (x, 1 - x), where x is player 1's probability to Stag. Similarly, player 2's strategy is (y, 1 - y).

- (i) For given x, y compute the players' payoffs $\pi^{(1)}(x, y), \pi^{(2)}(x, y)$ (see Remarks 2.6, 2.7).
- (ii) For a given y compute player 1's best response (BR(y)). In particular, show that there is some y^* such that all $x \in [0, 1]$ are a best response.
- (iii) Draw the two best response correspondences BR(x), BR(y) into a x y plane. How often do they intersect? What does it mean if they intersect?

Exercise 3: Cournot Duopoly

The Cournot duopoly game is defined by:

- Players: $N = \{ Firm 1, Firm 2 \}$
- Actions: Amount of good produced, $x^{(i)} \in [0, \infty)$ for $i \in \{1, 2\}$
- Payoffs: $\pi^{(i)}(x^{(1)}, x^{(2)}) = [a b(x^{(1)} + x^{(2)})]x^{(i)} cx^{(i)}$

Show that there is a Nash equilibrium in pure strategies. For simplicity assume a = 10, b = 1, c = 1.

[Hint: For each $x^{(i)}$ computer BR $(x^{(-i)})$. Then solve simultaneously:

$$x^{(1)} = BR(x^{(2)})$$

 $x^{(2)} = BR(x^{(1)})$

]

Exercise 4: Matching Pennies

Compute the Nash equilibria for the following two games, and interpret the result.

	Left	Right		Left	Right
Top	(0.8, 0.4)	(0.4, 0.8)	Top	((3.2, 0.4))	(0.4, 0.8)
Bottom	(0.4, 0.8)	(0.8, 0.4)	Bottom	(0.4, 0.8)	(0.8, 0.4)

Bonus Exercise 1: Verifying NE in games with finitely many players & actions

Show that to verify whether a strategy profile $\hat{\sigma} = (\hat{\sigma}^{(1)}, \dots, \hat{\sigma}^{(n)})$ is a Nash equilibrium, it is sufficient to check all deviations towards pure strategies.

Specifically show that $\hat{\sigma}$ is a Nash equilibrium if and only if for all players *i* the following two conditions hold:

- (i) All actions that player *i* uses give the same payoff: if $\sigma_j^{(i)} > 0$ and $\sigma_k^{(i)} > 0$ then $\pi^{(i)}(s_j^{(i)}, \hat{\sigma}^{(-i)}) = \pi^{(i)}(s_k^{(i)}, \hat{\sigma}^{(-i)})$.
- (ii) Actions that are not played are not profitable: if $\sigma_j^{(i)} = 0$ then $\pi^{(i)}(s_j^{(i)}, \hat{\sigma}^{(-i)}) \le \pi^{(i)}(\hat{\sigma}^{(i)}, \hat{\sigma}^{(-i)})$.

[Hint: One way to prove the above is once again by contradiction.]

Bonus Exercise 2: Finding games with a non-generic number of equilibria Find an example of a symmetric 2 player game, with 2 actions per player, with:

- Exactly 2 Nash equilibria
- infinitely many Nash equilibria

[Note: These should include all Nash equilibria. Not just pure Nash equilibria.]