Week 4. Static games with complete information III: Nash equilibria

Exercise 1: Nash equilibrium vs dominance solvability

Prove the following statements:

(i) If a pure strategy $s_{j}^{(i)}$ is dominated by a pure strategy $s_{k}^{(i)}$ and $\sigma=\left(\sigma^{(1)}, \ldots, \sigma^{(n)}\right)$ is a Nash equilibrium, then $\sigma_{j}^{(i)}=0$.
(ii) If the game is dominance solvable such that the unique outcome of iterated elimination of dominated strategies is some pure strategy $s=\left(s^{(1)}, \ldots, s^{(n)}\right)$, then s is a Nash equilibrium.
[Suggestion: One could use contradiction to prove the above statements. For example, for (i) assume that these was a Nash equilibrium with $\sigma_{j}^{(i)}>0$, and show that this would yield some contradiction.]

Exercise 2: Best responses

Consider the stag hunt game:

Suppose player 1 uses the mixed strategy $(x, 1-x)$, where x is player 1's probability to Stag. Similarly, player 2's strategy is $(y, 1-y)$.
(i) For given x, y compute the players' payoffs $\pi^{(1)}(x, y), \pi^{(2)}(x, y)$ (see Remarks 2.6, 2.7).
(ii) For a given y compute player 1 's best response $(\operatorname{BR}(y))$. In particular, show that there is some y^{*} such that all $x \in[0,1]$ are a best response.
(iii) Draw the two best response correspondences $\operatorname{BR}(x), \mathrm{BR}(y)$ into a $x-y$ plane. How often do they intersect? What does it mean if they intersect?

Exercise 3: Cournot Duopoly

The Cournot duopoly game is defined by:

- Players: $N=\{$ Firm 1, Firm 2 $\}$
- Actions: Amount of good produced, $x^{(i)} \in[0, \infty)$ for $i \in\{1,2\}$
- Payoffs: $\pi^{(i)}\left(x^{(1)}, x^{(2)}\right)=\left[a-b\left(x^{(1)}+x^{(2)}\right)\right] x^{(i)}-c x^{(i)}$

Show that there is a Nash equilibrium in pure strategies. For simplicity assume $a=10, b=$ $1, c=1$.
[Hint: For each $x^{(i)}$ computer $\operatorname{BR}\left(x^{(-i)}\right)$. Then solve simultaneously:

$$
\begin{aligned}
& x^{(1)}=\mathrm{BR}\left(x^{(2)}\right) \\
& x^{(2)}=\operatorname{BR}\left(x^{(1)}\right)
\end{aligned}
$$

]

Exercise 4: Matching Pennies

Compute the Nash equilibria for the following two games, and interpret the result.

$$
\left.\begin{array}{cccc}
& \text { Left } & \text { Right } & \\
\text { Top } & \left(\begin{array}{c}
(0.8,0.4) \\
(0.4,0.8) \\
\text { Bottom } \\
(0.4,0.8)
\end{array}\right. & (0.8,0.4)
\end{array} \quad \begin{array}{ccc}
\text { Left } & \text { Right } \\
\text { Bottom } & \left(\begin{array}{c}
(3.2,0.4) \\
(0.4,0.8)
\end{array}\right. & (0.4,0.8) \\
(0.8,0.4)
\end{array}\right)
$$

Bonus Exercise 1: Verifying NE in games with finitely many players \& actions

Show that to verify whether a strategy profile $\hat{\sigma}=\left(\hat{\sigma}^{(1)}, \ldots, \hat{\sigma}^{(n)}\right)$ is a Nash equilibrium, it is sufficient to check all deviations towards pure strategies.

Specifically show that $\hat{\sigma}$ is a Nash equilibrium if and only if for all players i the following two conditions hold:
(i) All actions that player i uses give the same payoff: if $\sigma_{j}^{(i)}>0$ and $\sigma_{k}^{(i)}>0$ then $\pi^{(i)}\left(s_{j}^{(i)}, \hat{\sigma}^{(-i)}\right)=$ $\pi^{(i)}\left(s_{k}^{(i)}, \hat{\sigma}^{(-i)}\right)$.
(ii) Actions that are not played are not profitable: if $\sigma_{j}^{(i)}=0$ then $\pi^{(i)}\left(s_{j}^{(i)}, \hat{\sigma}^{(-i)}\right) \leq \pi^{(i)}\left(\hat{\sigma}^{(i)}, \hat{\sigma}^{(-i)}\right)$.
[Hint: One way to prove the above is once again by contradiction.]

Bonus Exercise 2: Finding games with a non-generic number of equilibria
Find an example of a symmetric 2 player game, with 2 actions per player, with:

- Exactly 2 Nash equilibria
- infinitely many Nash equilibria
[Note: These should include all Nash equilibria. Not just pure Nash equilibria.]

