Week 6. Sequential games with complete information II: Subgame perfection and repeated games

Exercise 1: Battle of the sexes with an outside option

The battle of sexes is a game where two people would prefer to do something together, but each person likes a different activity best. The payoff matrix is

$$
\left.\begin{array}{l}
\\
a_{1} \\
a_{2}
\end{array} \begin{array}{cc}
a_{1} & a_{2} \\
(3,1) & (0,0) \\
(0,0) & (1,3)
\end{array}\right)
$$

Now suppose that before playing this game, player 1 can choose whether to play this game or to exit. If player 1 exits, both players obtain a payoff of 2 .

Show that the battle of sexes with an outside option has two pure subgame perfect equilibria:
(i) Player 1 plays, and both players choose activity a_{1}.
(ii) Player 1 exits, because if they were to play they would both choose activity a_{2}.

Bonus question: Can you give a compelling argument why player 1 may be able to undermine the second equilibrium?

Exercise 2: Two rounds of rock-paper-scissors

Consider the game rock, paper, scissors with the following matrix

	rock	paper
rock	scissors	
paper	$\left(\begin{array}{ccc}(0,0) & (-1,1) & (1,-1) \\ (1,-1) & (0,0) & (-1,1) \\ \text { scissors } & (-1,1) & (1,-1)\end{array}\right)$	

(i) If this game is played once, show that the strategy profile where both players use the mixed strategy $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ is the unique Nash equilibrium (You do not need to show uniqueness, only that it is a Nash equilibrium).
(ii) What is the subgame perfect equilibrium if the game is played twice?

Interpret the result.

Bonus 1: Cooperation in a finitely repeated game

Consider the game with the payoff matrix
$\left.\begin{array}{c} \\ C \\ D_{1} \\ D_{2}\end{array} \begin{array}{ccc}C & D_{1} & D_{2} \\ (3,3) & (0,4) & (-12,0) \\ (4,0) & (1,1) & (-10,0) \\ (0,-12) & (0,-10) & (-5,-5)\end{array}\right)$

Show that:

(i) If the game is only played once, there is no Nash equilibrium in which C is played with a positive probability.
(ii) If the game is played twice, there is a subgame perfect equilibrium in which C is played in the first round.
[Hint: Consider the strategy: Play C in the first round. If both players played C in the first round play D_{1} in the second round, otherwise play D_{2}.]

Bonus Exercise 2: Repeated prisoner's dilemma

Consider the infinitely repeated prisoner's dilemma with payoffs,

$$
\left.\begin{array}{c}
\\
C \\
C
\end{array} \begin{array}{cc}
C & D \\
D(3,3) & (0,4) \\
(4,1) & (1,1)
\end{array}\right)
$$

Prove that there are sequences of actions such that players' average payoff,

$$
\frac{1}{T+1} \sum_{t=0}^{T} u^{(i)}\left(a_{t}\right)
$$

does not converge as $T \rightarrow \infty$.
[Hint: Consider the case that both players first play C for one round. Then they play D for 2 rounds. Then they play C for four rounds. Then they play D for 8 rounds, etc]

