Antimicrobial drug therapy of infectious diseases

Evolutionary rescue or extinction at multiple scales

Hildegard Uecker
Max Planck Institute for Evolutionary Biology

ESEB Montpellier 2018
Evolutionary rescue

Can a population escape extinction through adaptive evolution?

Conservation biology
e.g. adaptation to anthropogenic change

Medicine
drug resistance: undesired rescue
e.g. antibiotic resistance:
resistant bacteria are responsible for
25,000 deaths/year in the European Union

Drug treatment in the face of resistance

Goals:
• maximise rate of decline (→ rapid recovery/survival)
• minimise probability of resistance evolution
• treatment should not kill the patient (→ keep economic costs manageable)

Sensitive pathogens decline at some rate

Some probability of resistance

Infectious diseases: rescue/extinction at two scales

Additional goals:
• minimise the disease prevalence
• minimise the outbreak probability of an epidemic
• minimise transmission of resistance (→ keep economic costs manageable)
Drug treatment in the face of resistance

Goals:
- maximise rate of decline (→ rapid recovery/survival)
- minimise probability of resistance evolution
- treatment should not kill the patient
 - keep economic costs manageable

sensitive pathogens decline at some rate

some probability of resistance

[Graph showing pathogen load over time with a dashed line indicating the probability of resistance]
Drug treatment in the face of resistance

Goals:
- maximise rate of decline (→ rapid recovery/survival)
- minimise probability of resistance evolution
- treatment should not kill the patient
 (keep economic costs manageable)

Infectious diseases: rescue/extinction at two scales
Drug treatment in the face of resistance

Goals:
- maximise rate of decline (→ rapid recovery/survival)
- minimise probability of resistance evolution
- treatment should not kill the patient
 (• keep economic costs manageable)

Infectious diseases: rescue/extinction at two scales

Additional goals:
- minimise the disease prevalence
- minimise the outbreak probability of an epidemic
- minimise transmission of resistance
 (• keep economic costs manageable)
How do we need to treat patients to best achieve these goals?

Treatment strategies:

- combination therapy
- drug cycling
- treatment coverage
- length of treatment
- drug dose
- ...
How do we need to treat patients to best achieve these goals?

Treatment strategies:

- combination therapy
- drug cycling
- treatment coverage
- length of treatment
- drug dose

For this talk:

What is the optimal drug dose?

Focus: Which dose is best at managing resistance?
What is the current strategy?

Therapeutic window

Use the highest possible dose:

- faster patient recovery
- less chance for de novo mutations
- if high enough: no (single-step) resistance

In the face of resistance, is this always the best choice?
What is the current strategy?

In the face of resistance, is this always the best choice?

Use the highest possible dose:

- faster patient recovery
- less chance for de novo mutations
- if high enough: no (single-step) resistance

Therapeutic window

growth rate

dosage

sensitive resistant

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6

0 0.2 0.4 0.6 0.8 1

growth rate
dosage
sensitive
resistant
Which drug dose minimises the risk of within-host resistance?

Advantages of a low dose:
- suppression of the resistant strain through competition
- immune response is mounted by the sensitive strain

![Graph showing the relationship between dose and within-host probability of resistance](image)

Figure adapted from Kouyos et al. 2014
Which drug dose minimises the risk of within-host resistance?

Advantages of a low dose:
- suppression of the resistant strain through competition
- immune response is mounted by the sensitive strain

Figure adapted from Kouyos et al. 2014
Which drug dose minimises the risk of within-host resistance?

Advantages of a low dose:

- suppression of the resistant strain through competition
- immune response is mounted by the sensitive strain

Figure adapted from Kouyos et al. 2014

Day and Read 2016
Which drug dose minimises the risk of within-host resistance?

Advantages of a low dose:
- suppression of the resistant strain through competition
- immune response is mounted by the sensitive strain

Figure adapted from Kouyos et al. 2014

Day and Read 2016
From the individual host to the population

one host

sensitive resistant

The drug dose affects pathogen replication.
From the individual host to the population – trade-offs?

The drug dose affects pathogen replication.

consequences for the disease dynamics in the population
How do we consider both scales?

random transmission between hosts: βSI
(single strain is transmitted)

Sketch: within-host dynamics

life-long immunity

Sketch: between-host dynamics

susceptible hosts
sensitive infections
resistant infections

level of the immune response
host turns
symptomatic
infectious

days

sensitive resistant
How do we consider both scales?

random transmission between hosts: βSI
(songle strain is transmitted)

Sketch: within-host dynamics

Sketch: between-host dynamics

life-long immunity

[Graphs showing within-host and between-host dynamics with various data points and annotations]
Does the same dose minimise resistance at both scales?

Measure: number of transmission events of the resistant strain

Two factors: appearance + spread of resistance
Does the same dose minimise resistance at both scales?

Measure: number of transmission events of the resistant strain

Two factors: appearance + spread of resistance
Does the same dose minimise resistance at both scales?

Measure: number of transmission events of the resistant strain

Two factors: appearance + spread of resistance
Does the same dose minimise resistance at both scales?

Measure: number of transmission events of the resistant strain

Two factors: appearance + spread of resistance
Does the same dose minimise resistance at both scales?

Measure: number of transmission events of the resistant strain

Two factors: appearance + spread of resistance
Does the same dose minimise resistance at both scales?

Measure: number of transmission events of the resistant strain

Two factors: *appearance* + *spread of resistance*
Does the same dose minimise resistance at both scales?

Measure: number of transmission events of the resistant strain

Two factors: appearance + spread of resistance
Does the same dose minimise resistance at both scales?

Measure: number of transmission events of the resistant strain

Two factors: appearance + spread of resistance
Does the same dose minimise resistance at both scales?

Measure: number of transmission events of the resistant strain

Two factors: appearance + spread of resistance

Graphical Description:

- **Sensitive infections that may turn resistant**
 - (high β)
 - (low β)

Spread of an existing resistant strain

- **Number of transmission events**
- **Dose**
Does the same dose minimise resistance at both scales?

Measure: number of transmission events of the resistant strain

Two factors: appearance + spread of resistance

[Graph showing the relationship between dose and within-host resistance and between-host resistance.]
Does the same dose minimise resistance at both scales?

Measure: number of transmission events of the resistant strain

Two factors: appearance + spread of resistance
Does the same dose minimise resistance at both scales?

Measure: number of transmission events of the resistant strain

Two factors: appearance + spread of resistance
What about the other treatment goals?

![Graphs showing recovery rates, outbreak probability, and disease burden vs dose with different treatment goals shown.](image)

Trade-offs between different treatment goals.
And now?

Which criterion should be used?

difficult & context-dependent, e.g.

- are all individuals immunocompetent?
- is the disease lethal?
- are there other drugs available?
And now?

Which criterion should be used?

difficult & context-dependent, e.g.
- are all individuals immuno-competent?
- is the disease lethal?
- are there other drugs available?

How can we resolve the conflicts?

- not possible by modulating nothing but the dose
- additional parameters need to be changed (e.g. isolation of symptomatic cases? combination therapy?)
Conclusion

- The evolutionary dynamics of pathogens and selection for resistance are determined by both within-patient and epidemiological dynamics.

- Different criteria may suggest different dosing strategies.

- There may be conflicts between the individual and the population levels.

Scire et al. (biorxiv)
Acknowledgements:

Jérémie Sciré
Nathanaël Hozé
Sebastian Bonhoeffer

funding: ERC, SNF

PhD position available

within the Research group

Stochastic Evolutionary Dynamics

(“The Rescue Team”)

Max Planck Institute for Evolutionary Biology

web.evolbio.mpg.de/stochdyn
uecker@evolbio.mpg.de

Thank you for your attention.

Photo credit:

owl: J. Whitlock, www.theonlinezoo.com
Salmonella: Rocky Mountain Laboratories, NIAID, NIH