Antimicrobial drug therapy of infectious diseases

Evolutionary rescue or extinction at multiple scales

Hildegard Uecker Max Planck Institute for Evolutionary Biology

ESEB Montpellier 2018

Evolutionary rescue

Can a population escape extinction through adaptive evolution?

Conservation biology

e.g. adaptation to anthropogenic change

Medicine

drug resistance: undesired rescue

e.g. antibiotic resistance:

resistant bacteria are responsible for 25,000 deaths/year in the European Union

WHO, Fact sheet "Antibiotic resistance", October 2015

Goals:

- maximise rate of decline (ightarrow rapid recovery/survival)
- minimise probability of resistance evolution
- treatment should not kill the patient
- (• keep economic costs manageable)

Infectious diseases: rescue/extinction at two scales

Goals:

- maximise rate of decline (ightarrow rapid recovery/survival)
- minimise probability of resistance evolution
- treatment should not kill the patient
- (• keep economic costs manageable)

Infectious diseases: rescue/extinction at two scales

Additional goals:

- minimise the disease prevalence
- minimise the outbreak probability of an epidemic
- minimise transmission of resistance
- (• keep economic costs manageable)

Big question

How do we need to treat patients to best achieve these goals?

Treatment strategies:

- combination therapy
- drug cycling
- treatment coverage
- length of treatment
- drug dose
- ...

Big question

How do we need to treat patients to best achieve these goals?

Treatment strategies:

- combination therapy
- drug cycling
- treatment coverage
- length of treatment
- drug dose

• . . .

For this talk:

What is the optimal drug dose?

Focus: Which dose is best at managing resistance?

What is the current strategy?

Therapeutic window

Use the highest possible dose:

- faster patient recovery
- less chance for de novo mutations
- if high enough: no (single-step) resistance

In the face of resistance, is this always the best choice?

What is the current strategy?

Therapeutic window

Use the highest possible dose:

- faster patient recovery
- less chance for de novo mutations
- if high enough: no (single-step) resistance

In the face of resistance, is this always the best choice?

Advantages of a low dose:

- suppression of the resistant strain through competition
- immune response is mounted by the sensitive strain

Advantages of a low dose:

- suppression of the resistant strain through competition
- immune response is mounted by the sensitive strain

Advantages of a low dose:

- suppression of the resistant strain through competition
- immune response is mounted by the sensitive strain

within-host resistance

FIGURE ADAPTED FROM KOUVOS ET AL. 2014

Day and Read 2016

Advantages of a low dose:

- suppression of the resistant strain through competition
- immune response is mounted by the sensitive strain

within-host resistance

FIGURE ADAPTED FROM KOUVOS ET AL. 2014

Day and Read 2016

From the individual host to the population

one host

sensitive resistant

The drug dose affects pathogen replication.

From the individual host to the population – trade-offs?

How do we consider both scales?

How do we consider both scales?

Measure: number of transmission events of the resistant strain

Measure: number of transmission events of the resistant strain

Measure: number of transmission events of the resistant strain

Measure: number of transmission events of the resistant strain

Measure: number of transmission events of the resistant strain **Two factors:** appearance + spread of resistance an existing strain Infec resistant spread of •••••••••

dose

Measure: number of transmission events of the resistant strain

Measure: number of transmission events of the resistant strain

Measure: number of transmission events of the resistant strain

Measure: number of transmission events of the resistant strain

within-host resistance

within-host resistance

within-host resistance

What about the other treatment goals?

Trade-offs between different treatment goals.

And now?

Which criterion should be used?

difficult & context-dependent, e.g.

- are all individuals immunocompetent?
- is the disease lethal?
- are there other drugs available?

And now?

Which criterion should be used?

difficult & context-dependent, e.g.

- are all individuals immunocompetent?
- is the disease lethal?
- are there other drugs available?

How can we resolve the conflicts?

- not possible by modulating nothing but the dose
- additional parameters need to be changed (e.g. isolation of symptomatic cases? combination therapy?)

Conclusion

• The evolutionary dynamics of pathogens and selection for resistance are determined by both within-patient and epidemiological dynamics.

• Different criteria may suggest different dosing strategies.

• There may be conflicts between the individual and the population levels. SCIRE ET AL. (BIORXIV)

Acknowledgements:

Jérémie Sciré Nathanaël Hozé

Sebastian Bonhoeffer

funding: ERC, SNF

PhD position available

within the Research group *Stochastic Evolutionary Dynamics* ("The Rescue Team") Max Planck Institute for Evolutionary Biology

web.evolbio.mpg.de/stochdyn uecker@evolbio.mpg.de

THANK YOU FOR YOUR ATTENTION.

Photo credit: owl: J. Whitlock, www.theonlinezoo.com Salmonella: Rocky Mountain Laboratories, NIAID, NIH