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a b s t r a c t

Regular echinoid skeletons, or tests, comprise plate patterns and overall shapes that have proven

challenging to analyse solely on the basis of any one approach or process. Herein, we present a

computational model, Holotestoid, that emulates four macrostructural ontogenic processes involved in

test growth (plate growth, plate addition, plate interaction, and plate gapping). We devise a geometric

representation for analysing tests and describe how we use analogies (bubble interactions and close-

packing) to emulate the processes. In the computational model, the emulated processes are used to

determine the plate size and plate shape and combined to simulate a growth zone. We simulated growth

zones for Arbacia punctulata and for Strongylocentrotus franciscanus by changing the value for one

parameter, the ambulacral column angle. We quantitatively compared morphological features for

simulated forms to those for real specimens to test the computational model. Additionally, we simulated

growth zones for A. punctulata, S. franciscanus, Eucidaris thouarsii, and Mellita quinquiesperforata

by changing three parameters, ambulacral column angle, peristome radius to apical system radius ratio,

and apical system radius to column length ratio. Holotestoid can be used to explain morphological

disparity among echinoid tests.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Echinoid skeletons, or tests, are classified as permanent and
mutable endoskeletons; skeletal form within an individual is
retained, with changes occurring through growth (Vermeij,
1970). Echinoids present ideal systems for studying diminishing
or regenerating calcified structures (Märkel and Roser, 1983).
Knowledge about echinoid test growth can be implemented
toward understanding vertebrate skeletons, as they also are
permanent and mutable endoskeletons. However, describing
and explaining echinoid test growth has proven challenging for
researchers because factors such as individual longevity (i.e., an
over 100-year life span; Ebert and Southon, 2003) and internali-
sation prohibiting direct access (Hyman, 1955) have hindered
analysis. Herein, we present Holotestoid, a computational model
designed to explore regular echinoid test growth in a manner that
cannot be analysed practically through in vivo experimental
techniques. Holotestoid provides a tool for describing and
explaining the morphological disparity that is observed among
echinoid tests (Jackson, 1912; Kier, 1974; Smith, 2005).
ll rights reserved.
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1.1. Echinoid form

Echinoid tests comprise microstructures and macrostructures.
Microstructurally, the plates within tests involve three-dimen-
sional meshworks, mineralised trabeculae containing magnesium
calcite with minor additions of protein in minor associations,
termed stereom (Märkel and Roser, 1985). Pores among trabecu-
lae are suited ideally for fibrous tissue such as fibrocytes,
sclerocytes, and collagen to be inserted. Collagen fibres suture
adjacent plates together, but they also provide flexibility to tests
(Ellers et al., 1998; Johnson et al., 2002).

Macrostructurally, plates, themselves, function as the ‘building
blocks’ in echinoid tests. Five different plate types define three
distinct regions (Fig. 1). The peristome (ps) contains buccal plates
(Fig. 1) and, in some species, primordial ambulacral plates
(Hyman, 1955); the apical system (ap) contains genital (ge) plates
and ocular (oc) plates; and the corona (cr) contains ambulacral
(am) plates and interambulacral (ia) plates (Fig. 1). Plate arrange-
ments within these regions produce pentamerous symmetry, an
echinoderm characteristic (Hyman, 1955).

Each echinoid test is divided into five growth zones. A growth
zone (gz) is a section containing biserial ambulacral columns and
two flanking interambulacral columns. All plates within a growth
zone nucleate from the same ocular plate (Jackson, 1912; Mooi
et al., 1994; Mooi and David, 1996).
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Nomenclature

ab ambitus
am ambulacral plates
ap apical system
cl column length
cr corona
dp distance from the polar region to a plate
ge genital plates
gz growth zone
ia interambulacral plates
oc ocular plates
oh ocular plate height
ow ocular plate width
ps peristome
ph interambulacral plate height

pw interambulacral plate width
rX radius for bubble or circle X, with X¼A, B, C, D in

different parts in the text
Splate plate size (diameter for circle representing plate)
a column angle (general)
aia interambulacral column angle
aNam new ambulacral plate nucleation angle
aNia new interambulacral plate nucleation angle
aNpia interambulacral plate angle
tpn total plate number
agz growth zone angle
aam ambulacral column angle
apr apical system radius
psr:apr peristome radius to apical system radius ratio
apr:cl apical system radius to column length
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1.2. Echinoid growth

We limit our echinoid test growth description to the macro-
structural level. Plate ontogeny plays a major role in test growth,
through five macrostructural ontogenic processes. Four processes
are direct – plate growth, plate addition, plate interaction, plate
gapping, and one is indirect – visceral growth. Plate growth is the
process by which calcite accretes or resorbs peripherally (Pearse
and Pearse, 1975; Märkel, 1981). Plate addition is the process
whereby plates are added contiguous with ocular plates (Jackson,
1912; Mooi et al., 1994; Mooi and David, 1996). Plate interaction
is the process by which plates touch and interconnect directly or
indirectly with each other (Moss and Meehan, 1967; Raup, 1968).
Plate gapping is the process whereby collagen fibres loosen,
allowing plates to separate from one another (Ellers et al., 1998;
Johnson et al., 2002). Visceral growth is the process wherein
effects imparted by somatic growth onto skeletal structures are
integrated (Deutler, 1926; Gordon, 1926; Ellers and Telford,
1992). These five processes are interrelated and occur simulta-
neously. Consequently, empirically differentiating the direct con-
tribution by each individual process to ontogeny is challenging.
Thus, researchers have adopted theoretical modelling as an
alternative technique suited for elucidating echinoid test growth.

1.3. Theoretical models

Within the past century, nine theoretical models have been
proposed to describe or explain growth in extant regular echinoid
tests (Thompson, 1917; Moss and Meehan, 1968; Raup, 1968;
Seilacher, 1979; Telford, 1985, 1994; Baron, 1990, 1991; Ellers,
1993; Zachos, 2009; Abou Chakra and Stone, 2008; reviewed in
Abou Chakra and Stone, 2011). At least one macrostructural onto-
genic process was excluded from each model (in the following
descriptions, we present the models specifically as they relate to
the five processes). Three models include one process: Thompson
(1917) considered visceral growth, using liquid drops as an analogy
to describe test form; Moss and Meehan (1968) considered visceral
growth, likening regular test growth to mammalian cranial expan-
sion; and Ellers (1993) emulated visceral growth, using a liquid drop
analogy and thin shell theory to explain the overall test curvature
(we use the word ‘emulate’ to refer to processes and ‘simulate’ to
refer to their product). Four models include two processes: Seilacher
(1979) considered visceral growth, describing tests as mineralised
pneu structures that grow when internal pressures exceed external
surface tensions, and proposed that diverse morphologies result from
differential plate growth gradients; Telford (1985, 1994) described
plate addition and plate growth, hypothesising that tests are con-
structed to resist external forces and using the mechanics associated
with dome structures as an analogy to explain structural strength;
Baron (1990, 1991) created a computational model in which plate
growth was determined by ‘hoop’ growth equations, which, them-
selves, were determined from finite-element analysis, and visceral
growth, which was regulated on the basis of height-to-diameter
ratios and internal pressure; and Zachos (2009) computationally
described visceral growth, utilising Ellers’ model, and plate growth,
by projecting Voronoi diagrams onto spherical surfaces. One model
includes three processes: Raup (1968) emulated plate interactions,
using a computational model, and described plate addition, using a
logistic equation, and plate growth, using a parabolic function.

We describe herein a computational model that emulates the four
direct, macrostructural ontogenetic processes. We build on Abou
Chakra and Stone (2008), in which we used a bubble analogy to
emulate interambulacral plate interactions as a conceptual basis for
modelling echinoid tests (Thompson, 1917; Raup, 1968). That model
involved a parabolic function and a logistic equation to describe plate
growth and plate addition (Raup, 1968) and introduced conceptually
circle-packing principles to emulate plate gapping.

We implement a geometric representation to explain plate
growth and plate addition, eliminating the need for a parabolic
function and logistic equation. We use physical and mathematical
principles to emulate plate interactions and a novel circle-packing
algorithm to emulate plate gapping . By integrating the four direct
macrostructural ontogenic processes in Holotestoid, we provide
researchers with a tool for gaining insight into how echinoid test
morphologies are produced and have evolved.
2. Methodology

2.1. Empirical methods

We obtained live specimens of Arbacia punctulata (n¼33)
from Gulf Specimen Marine Laboratory, Panacea, FL, USA;
Strongylocentrotus droebachiensis (n¼1) and S. franciscanus (n¼14)
from Westwind Sealab Supplies, Victoria, BC, Canada; and Mellita

quinquiesperforata (n¼10) from Marine Biological Laboratory,
Woods Hole, MA, USA. We obtained dry test specimens of Eucidaris

thouarsii (n¼6) from the California Academy of Sciences collection,
San Francisco, CA, USA. Sample sizes were determined by avail-
ability. Specimens of A. punctulata and S. franciscanus were used in
validating the computational model (i.e., assessing whether the
computational model produced morphometric variables that were



Fig. 1. Echinoid test specimens, Strongylocentrotus fransiscanus (a–c) and S. droebachiensis (d,e). (a) Apical surface, containing the apical system (ap), with corona (cr) and

growth zone (gz); (b) oral surface, containing the peristome (ps); (c) apical system, containing genital plates (ge) and ocular plates (oc), with ocular plate height (oh) and

ocular plate width (ow); (d) disarticulated test, revealing ambulacral columns (am) and interambulacral columns (ia); and (e) magnified interambulacral plate height (ph)

and interambulacral plate width (pw).
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similar to those measured from real specimens), and specimens of
all four species were used in simulating growth zones.

We performed measurements on despined, eviscerated, and
cleaned tests (Figs. 1 and 2): apical system (ap), peristome (ps),
column length (measured from the apical system edge to the
peristome, cl), growth zone width (gz), growth zone height
(measured as the shortest distance from the apical system
boundary to the ambitus, ab), ambulacral column width (am),
ambulacral column height (measured as the shortest distance
from the apical system centre to the ambitus), interambulacral
plate height (ph), interambulacral plate width (pw), ocular plate
height (oh), and ocular plate width (ow).

2.2. Theoretical method

The computational model, Holotestoid, can be run on a
personal computer, using the technical computing environment
Mathematica 7.0 (Wolfram Research, Inc., 2009) as a software
platform. Computer program code can be acquired from the
supplementary materials deposited with the journal.
3. Holotestoid: modelling direct, macrostructural ontogenic
processes

We designed Holotestoid to simulate growth zones for regular
echinoid tests, using the following parameters: total plate num-
ber, growth zone angle (angle indicated by the spanning length gz

in Fig. 2), ambulacral column angle (angle indicated by am in
Fig. 2), apical system radius (Fig. 2), peristome radius to apical
system radius ratio, and apical system radius to column length
ratio (Fig. 2).

We developed a theoretical analytical framework for emulat-
ing the four direct macrostructural ontogenic processes, using
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a geometric representation that transforms three-dimensional
tests (Fig. 3a) into two-dimensional graphic objects (Fig. 3b). The
transformation facilitates modelling: an inner circle represents the
Fig. 3. Theoretical analytical framework for emulating the four direct, macrostructural ont

tests (a) into two-dimensional graphic objects; (a) Arbacia punctulata test, showing apic

respectively; (b) two-dimensional geometrical representation: inner circles represent apical s

periphery for the test), to demarcate the coronal region (cr). (a) and (b) depict a growth zone d

Fig. 2. Schematic representation for an echinoid test: apical system (ap; horizon-

tal line represents diameter), peristome (ps; horizontal line represents diameter),

column length (cl), growth zone width (gz), test height (h), ambitus diameter (d),

ambulacral column width (am) and interambulacral column width (ia).
boundary for either an apical system (top) or peristome (bottom)
and an outer circle represents a test surface with a diameter
equivalent to the ambitus (Fig. 3b); circles representing the two
test surfaces (aboral and oral, or upper and lower) are situated
tangential to one another, thereby mimicking a continuous column
(Fig. 3b). Each growth zone is divided into three sectors, distin-
guishing interambulacral from ambulacral columns (Fig. 3), and
plates comprising columns are represented as circles (Fig. 4).

The geometric representation provides a platform to establish
conceptual links among test components and to define physical
features such as plate sizes, growth zone angles, and column
angles. We ultimately encoded the conceptual links among test
components into the computational model to emulate the four
direct, macrostructural ontogenic processes. However, as insuffi-
cient information about the processes could be obtained empiri-
cally from morphological data, we first utilised analogies. For
instances, the mechanisms producing curved boundaries at plate
interfaces (Raup, 1968) and the distances involved in plate
gapping are understood incompletely. Therefore, we used coales-
cing bubbles and close-packing arrangements as analogues, to
describe, respectively, plate interaction and plate gapping. These
analogues are understood on the basis of concrete physical
principles and mathematical principles, such as Plateau’s Laws,
Descartes’ Circle Theorem, and the Fermat Point.

3.1. Plate growth

Plate growth, plate size change, is manifested through periph-
eral accretion or resorption (Pearse and Pearse, 1975; Märkel and
Roser, 1983). We used the geometrical representation to study
the relationship between plate size and plate location. We
collected interambulacral plate height (Fig. 1e) and interambula-
cral plate width (Fig. 1e) measurements from specimens of
A. punctulata and S. franciscanus. We grouped specimens on the
ogenic processes, using a geometric representation that transforms three-dimensional

al surface (top) and oral surface (bottom), containing apical system and peristome,

ystem (top) and peristome (bottom) and outer circles each represent ambitus (ab; outer

ivided into three sectors delineating ambulacral (am) and interambulacral (ia) columns.



Fig. 4. Geometric representation defining test structures (regions and plates),

using circles. Inner circles represent apical system (top) or peristome (bottom) and

each outer, dashed circle represents an ambitus (outer periphery of the test). One

growth zone is shown, with apical system (ap) containing genital plates (ge) and

ocular plates (oc); corona (cr) containing ambulacral columns (am) and inter-

ambulacral columns (ia); and peristome, ps.

Fig. 5. Plots for (plate number, plate height) and (plate number, plate width) pairs

for two sea urchin species. A. punctulata (a) measured plate heights from speci-

mens containing 12–15 interambulacral plates in a column; (b) measured plate

widths from specimens containing 12–15 interambulacral plates in a column; and

(c) predicted plate widths from simulation representing 8–12 interambulacral plates

in a column. S. franciscanus (d) measured plate heights from specimens containing

12–20 interambulacral plates in a column; (e) measured plate widths from speci-

mens containing 12–20 interambulacral plates in a column; (f) predicted plate widths

from simulation representing 12–18 interambulacral plates in a column (simulations

involved 40 ambulacral plates, and, therefore, predicted interambulacral plate

numbers differed from actual interambulacral plate numbers; plot points were joined

to reveal trends and morphological features, such as the position for the ambitus).
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basis of plate number within each interambulacral column, which
ranged from 12 to 15 for A. punctulata (Fig. 5a and b) and 12–20
for S. franciscanus (Fig. 5d and e). Plate width increased with
distance from either the apical system or peristome, therefore
maximising at the ambitus (peaks in Fig. 5b and e). Ambital plate
height and ambital plate width increased with total plate number
(Fig. 5; plates were numbered starting from the peristome and
ending at the apical system). For these regular echinoid species,
plate size is related to location within a growth zone, corroborat-
ing previous findings (Moss and Meehan, 1968; Raup, 1968).

We implemented the relation between plate size and plate
location in the computational model. Plate size is related to
relative longitudinal distance from the polar regions. Plates above
the ambitus are associated with the aboral surface, containing the
apical system, and plates below the ambitus are associated with
the oral surface, containing the peristome (Fig. 4). Plates are
ascribed as either ambulacral or interambulacral on the basis of
their latitudinal position within a growth zone. Latitudinal posi-
tion was determined by reference to growth zone angle (agz).
Algorithmically, agz was calculated geometrically (e.g., to calculate
agz, the computational model created two line segments diverging
from the apical system centre and ending at the ambitus, where
the linear distance between them at the ambitus was equal to the
growth zone width, and rotated one line segment onto the other).
Algebraically, agz is calculated as a sum between the aam and the
interambulacral column angle (aia) located within it:

agz ¼ aamþaia ð1Þ

Echinoids are characterised by pentamerous symmetry; however,
for consistency, we used the geometric representation to measure
growth zone sectors. Measurements from A. punctulata and
S. franciscanus yielded average agz¼72741 and 72731, respectively
(all7errors reported herein represent one standard deviation).
Based on these data, we used agz¼721 as a default. Additionally,
ambulacral column angles (aam) were measured with respect to the
apical system for A. punctulata and S. franciscanus, yielding average
aam¼20721 and 31731, respectively. The measurements show
that aam values can distinguish empirically between growth zones
for A. punctulata and S. franciscanus (Fig. 5).
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On the basis of the aforementioned data, we posited that plate
size is determined by relative longitudinal distance from a polar
region (apical system or peristome) and column angle (ambula-
cral or interambulacral). We designed and included in the
computational model a function that determines plate size
(realised as the diameter for a circle, Splate) in three steps. In the
first step, the column type angle (ambulacral or interambulacral)
is associated with a plate by calculating its relative latitudinal
position within a growth zone. In the second step, Euclidean
distance (in the geometric representation) is used to determine in
which surface (aboral or oral) a plate is situated, by calculating
the longitudinal distance for that plate from the apical system and
peristome. In the third step, column angle (a) and distance from
the polar region to the plate (dp) in Eq. (2) are used to calculate
Splate. We defined an isosceles triangle, with its vertex at the pole
and its two equal-length sides extending from the vertex along a
length equal to dp. The angle opposite to the vertex is equal to a
and the length of the base is equal to Splate:

Splate ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2d2

pð1�cos½a�Þ
q

ð2Þ

We considered plate growth from an integrative perspective;
modifications to any region (corona, peristome, or apical system)
may result from a change in plate size within that region, and
this has ensuing effects on the entire test. For example, if even
a single ocular plate were to increase in size, then it would
produce an increase in the overall size of the apical system; an
increase in the apical system causes a cascade of modifications
Fig. 6. Sea urchin test morphologies. (a) A. punctulata specimen apical system imaged f

column angle (21711) delineates ocular plates (thick lines) and nucleation angle

(d) S. franciscanus apical system represented graphically; the ambulacral column angle

apical system (ap), ocular plate (oc), genital plate (ge), interambulacral nucleation poin
throughout the test to maintain relative plate size and column
angle relationships.
3.2. Plate addition

Plate addition involves the insertion of new plates at the apical
system. Each new plate is situated coterminously with an ocular
plate (Jackson, 1912; Gordon, 1926, 1929; Kier, 1956; Mooi et al.,
1994). Although numbers and positions for real nucleation points
are unknown, previous researchers have utilised the fact that two
triangular spaces occur per interambulacrum to simulate inter-
ambulacral plate nucleation (e.g., Raup, 1968). We developed the
computational model so that each ocular plate could accommo-
date four nucleation points (two for ambulacral plates and two for
flanking interambulacral plates); code functions default to adding
one plate per column at each iteration, alternating between
nucleation points to mimic plate addition observed in real speci-
mens (Gordon, 1926, 1927, 1929).

We investigated the relationship among the ocular plates,
apical system, and ambulacral columns to determine nucleation
points and sizes for new plates. We measured ocular plate height
(Fig. 1c), ocular plate width (Fig. 1c), and distances from the apical
system to ocular plates (dp in Eq. (2)) to determine nucleation
points. We calculated the angles between the outer edges along
ocular plates and the apical system centre. Inserting ocular plate
size (Splate) and dp into Eq. (2), we obtained a¼21731 and 33781
for (ambulacra in) A. punctulata and S. franciscanus, respectively.
These angles are similar to the ambulacral column angles
rom above. (b) A. punctulata apical system represented graphically; the ambulacral

s (thin lines). (c) S. franciscanus specimen apical system imaged from above.

(32711) delineates ocular plates (thick lines) and nucleation angles (thin lines);

ts (inp), and ambulacral nucleation points (anp).



Fig. 7. Plateau boundaries simulated using Eq. (5) to calculate radii for interface

boundary circles and pairs of Eqs. (6) and (7) to determine distances between

bubbles: (a) unequal-sized bubbles (A and B), yielding a curved interface

boundary; (b) a curve showing that the radius for the interface boundary circle C

(grey circle) increases as the radius for bubble B (smaller circle) approaches the radius

for bubble A (larger circle; the shape of the curve depends on the value of ra).
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previously quantified for the two species (20721 and 31731,
respectively; Section 3.1). Based on these empirical data, we
conclude that ocular plate size also is determined on the basis
of latitudinal position from the apical system (Fig. 6).

Using an ocular plate as a reference, we used the geometric
representation and measured the angles associated with new
ambulacral plates and new interambulacral plates relative to the
apical system, nucleation angles aNam and aNia, respectively. The
angles aNam¼6.9671.391 and 8.6671.871 for A. punctulata and
S. franciscanus, respectively; the angles aNia¼23.673.761 and
34.576.281, respectively. We calculated the ratios between
ambulacral column angle (aam) and nucleation angles aNam and aNia:
aNam:aam¼0.35:1 and 0.28:1 for A. punctulata and S. franciscanus,
respectively; aNia:aam¼1.2:1 and 1.1:1 for A. punctulata and
S. franciscanus, respectively. On the basis of these values, the angles
aNam and aNia can be related to the parameter aam, and, thus, we
encoded as defaults in the computational model:

aNam ¼ 0:3aam, aNia ¼ aam ð3Þ

The angles aNam and aNia allow nucleation points to be located at the
periphery along a simulated ocular plate (Fig. 6). Code functions
default to inserting nucleation points symmetrically relative to the
centre in a simulated ocular plate, two pairs on either side, one for an
ambulacral column and one for an interambulacral column.

In real specimens, new ambulacral plates originate underneath
ocular plates and interambulacral plates are inserted adjacent to
ocular plates (Gordon, 1926; Märkel, 1981). In the computational
model, once nucleation points have been determined, new plates
sizes are predicted. New ambulacral plate size is calculated using
Eqs. (2) and (3). Eq. (2) is used to calculate plate size on the basis
of the distance between the nucleation point from the apical
system centre (dp) and the ambulacral nucleation angle (aNam);
aNam is obtained from Eq. (3).

New interambulacral plate size is calculated by a method that
is similar to the aforementioned method for calculating new
ambulacral plate sizes (i.e., using Eqs. (2) and (3)), except that,
rather than using aNam, the interambulacral plate angle (aNpia) is
used. As aNia is approximately equal to aam, the computational
model determines aNpia as the difference between aNia and aNam

and dividing by two to obtain a value for one column:

aNpia ¼ ðaNia�aNamÞ=2 ð4Þ

3.3. Plate interaction

Plate interaction occurs when plates in a column are in direct
contact (even interlocking) with each other (Smith, 1980). We
propose that these interactions influence plate shape. As pro-
posed by Raup (1968), advocated by Dafni (1986), and imple-
mented by Abou Chakra and Stone (2008), we used analogy to
explain plate interactions. In the analogy, individual plates are
likened to bubbles (circles in two dimensions). We modelled plate
interactions, implementing Plateau’s Laws to predict the inter-
faces adopted between bubble pairs.

A single bubble adopts a spherical shape because that yields
the smallest surface area relative to volume in comparison to
other shapes. Similarly, bubbles cluster to minimise the surface
area between and among constituent bubbles (Boys, 1958).
Plateau’s Laws satisfy geometric conditions that are described
quantitatively (Isenberg, 1978) by the equations:

r�1
B ¼ r�1

A þr�1
C ð5Þ

9AB92
¼ r2

Aþr2
Bþ2rArB cos½p=3� ð6Þ

9AC92
¼ r2

Aþr2
Cþ2rArC cos½2p=3� ð7Þ
These equations quantify the relationships between the curva-
tures (the inverses of the radii) for a pair of bubbles (A and B) and
the curvature for their interface boundary circle (C) (Fig. 7). Eq. (5)
is derived from the Young–Laplace equation, in which the
pressure differential between the bubbles is calculated by multi-
plying surface tension by curvature (Young, 1805; Isenberg, 1978);
Eq. (5) stipulates that the sum of the curvatures for bubble A and
circle C is equal to the curvature for bubble B. Eqs. (6) and (7) use
the Cosine Law to calculate, respectively, the distance between
the centre for bubble A and the centre for bubble B, given that
their radii, rA and rB, meet at an angle equal to p/3 radians, and
bubble A and circle C, given that their radii, rA and rC, meet at an
angle equal to 2p/3 radians (Isenberg, 1978). The three equations
are used by the computational model to predict the interface
curvature between bubbles, which determines plate shapes and
plate patterns.

The interface that is shared by the two bubbles is called a Plateau
Boundary (Fig. 7). To determine a Plateau Boundary, two cases are
considered, one with equal-sized bubbles and the other with
different-sized bubbles. When equal-sized bubbles interact, no
pressure differential is produced, and, in accordance with Eq. (5),
the radius for circle C (rC) is infinitely large, so the Plateau boundary
is straight (Isenberg, 1978). When unequal-sized bubbles interact, a
pressure differential is produced and the smaller bubble B, which
contains higher pressure, pushes into the larger bubble A (Isenberg,
1978). The boundary between bubbles is determined by calculating
the radius for circle C (rC), using Eq. (5).

Algorithmically, Eq. (5) generated the radius for an interface
boundary circle C (Fig. 7). Then, Eq. (6) yielded the distance
between bubble A and bubble B, given their sizes. Lastly, Eq. (7)
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returned the distance between bubble A and circle C to determine
the position for the Plateau boundary between bubble A and
bubble B (Fig. 7).
Fig. 9. Circle-close-packing arrangements assume a specific tangency pattern,

(a) squared or (b) triangular. Representation for an inner circle (smallest, in

centre) and an outer circle (largest, on outside) around a triplet.
3.4. Plate gapping

Plate gapping occurs during active growth in regular echinoids,
through collagen fibre loosening. Loosening allows plates to
separate from one another, creating voids for new plate addition
and calcite deposition to occur (Ellers et al., 1998; Johnson et al.,
2002). The computational model achieves plate gapping in two
dimensions by arranging circles in a close-packing configuration
to emulate suture loosening (Fig. 8); theoretically, this is mod-
elled by rearranging circles from their interacting (overlapping)
state to a close-packing state, with no overlaps and minimal gaps.

Circle-close-packing arrangements assume a specific tangency
pattern, squared or triangular (Fig. 9a and b). The densest circle-
close-packing tessellation patterns are triangular, wherein only
three circles meet around one point (Aste and Weaire, 2000;
Stephenson, 2005). Although equal-sized circle-packing properties
are understood and methods are well established (Stephenson,
2005), unequal-sized circle-packing properties (specifically packing
without a fixed boundary) are undetermined and methods
are lacking. To close-pack circles, we devised and applied an
algorithm designed for unequal sized circles. We considered
unequal circles because, biologically, plates assume different sizes
(Section 3.1).

The computational model arranges unequal-sized circles in a
triangular circle-close-packing configuration through three iterative
steps. The first step partitions circles into triplets, as determined by a
neighbour-finding algorithm that uses proximal distance (measured
centre-to-centre); only touching circles are defined as neighbours.
The second step arranges the triplets in a close-packing configura-
tion; although triplets comprising unequal sized circles may be
arranged in multiple configurations, biologically, plates maintain
Fig. 8. Plate gapping. (a) Schematic graphic showing three circles in an interacting arra

are displayed linearly for clarity; (c) illustration showing collagen sutures between pla
relative arrangements. Therefore, the third step involves a ‘relative-
close-packing’ algorithm.

The relative-close-packing algorithm incorporated the Fermat
Point, Eq. (8), and Descartes’ Circle Theorem, Eq. (9):

9minDist9¼ 9PA9þ9PB9þ9PC9 ð8Þ

rD ¼
rArBrCðrBrCþrAðrBþrCÞÞ72

ffiffiffiffiffi
rA
p ffiffiffiffiffi

rB
p ffiffiffiffiffi

rC
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rAþrBþrC
p

r2
AðrB�rCÞ

2
þr2

Br2
C�2rArBrCðrBþrCÞ

ð9Þ

where the term on the left side in Eq. (8) represents minimum
distance; the terms on the right side in Eq. (8) represent the
distance between a point, P, and the position for each among
three vertices, A, B, and C, in a triangle with sides connecting
centres for three tangential circles, A, B, and C, respectively; and rD

in Eq. (9) represents the radius for a circle that occupies the space
ngement and (b) in a close-packing arrangement emulating plate gapping; sutures

tes in a real specimen.



Fig. 11. Schematic graphic showing interambulacral plates (black, outer circles)

arranged around ambulacral columns (light, inner circles), with apical system (ap,

grey circle), peristome (ps, grey circle), ocular plates (dashed circle in the centre),

and two flanking genital plates (dashed circles). The computational model inserts

interambulacral plates with respect to the ambulacral column length. As ambu-

lacral plate number increased, interambulacral plate number also increased.
Fig. 10. Animation produced by Holotestoid. An overlapping arrangement for

unequal sized circles transformed into a close circle-packing arrangement.
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within the three tangential circles, with radii rA, rB, and rC,
respectively (Vandeghen, 1964).

The computational model includes a function that determines
the centroid amid three circles by calculating the Fermat Point. The
Fermat Point marks the location where the summed distances from
the centres in the circle triplet is a minimum (Coxeter, 1969). We
chose the Fermat Point as the location to initiate close-packing
because, within a bubble triplet, it corresponds to the minimum
energy point (Lovett and Tilley, 1994). The function uses Descartes’
Circle Theorem to determine rD, the radius for an inner circle
(Fig. 9c), which the computational model uses to assign gap sizes.
Inner circle radii define the translation required by each circle
within a triplet to achieve close-packing. The algorithm yields a
triplet, with circles positioned tangentially to each other in a
configuration that corresponds to their initial orientation (Fig. 10).
4. Holotestoid: utilising direct, macrostructural
ontogenic processes

The four direct, macrostructural ontogenic process are inte-
grated in the computational model Holotestoid. To test Holotes-
toid, we used it to simulate growth zones and predict values for
plate sizes and plate shapes, then compared predicted values to
measured values. We also were able to extract additional infor-
mation, such as interambulacral plate number, interambulacral
plate width, and ambitus position.

Holotestoid simulates one growth zone, using the following
parameters. Total plate number (tpn) determines how many
ambulacral plates will be added throughout a simulation. Growth
zone angle (agz) determines the width for the growth zone being
simulated; the default value is 721. Ambulacral column angle
(aam) determines the width for the ambulacral column. Apical
system radius (apr) defines the size for the apical system.
Peristome radius to apical system radius ratio (psr:apr) provides
a constant relative size relation for the test. Apical system radius
to column length ratio (apr:cl) provides the computational model
with another constant relative size relation (apr:cl¼0 constitutes
a special case, which Holotestoid translates to no growth for the
polar regions).
The computational model is designed to allow plates to be
added exclusively to one column type (ambulacral, for instance);
it thereby provides a tool for predicting morphological variables,
such as interambulacral plate number, interambulacral plate
width, and ambitus position. Interambulacral plates may influ-
ence test shape (Märkel, 1981), and interambulacral plate num-
bers and interambulacral plate sizes vary among species (Kier,
1974). To accommodate their effects computationally, we
designed and included in the computational model a function
that predicts how many interambulacral plates are required to
surround a simulated ambulacral column (Fig. 11). Using that
function, the computational model continuously adds interambu-
lacral plates adjacent to ocular plates until the column spanning
from the apical system to the peristome is packed. As an
ambulacral column increases in length, interambulacral plates
increase in size (Fig. 11).

We performed two different simulations. First, we varied the
ambulacral column angle (aam) exclusively (i.e., all other para-
meters fixed) to investigate its influence on growth zone shape.
Second, we varied aam, peristome radius to apical system radius
ratio (psr:apr), and apical system radius to column length ratio
(apr:cl) (i.e., all other parameters fixed) to test the analogies used
for plate interaction and plate gapping.

4.1. Growth zones aam

We hypothesised that ambulacral column angle is a crucial
parameter to differentiate growth zones among species. We
simulated two growth zones, one for A. punctulata and another
for S. franciscanus, by varying the aam (aam¼201 for A. punctulata

and aam¼311 for S. franciscanus; the other parameters were fixed
at tpn¼40, agz¼721, apr¼0.05 mm, psr:apr¼1, and apr:cl¼0).

Using the emulated plate interaction process, we mimicked plate
boundaries in a column (Fig. 12). The computational model arranged
plates in an overlapping configuration, and the boundaries between
them were determined using the function that describes the plate
interaction process. Qualitatively, the growth zone for A. punctulata

(aam¼201) was narrower than the growth zone for S. franciscanus

(aam¼311, Fig. 12). Plate widths between the two growth zones
differed, being larger in S. franciscanus (Fig. 12).

To assess growth results from these simulations, we utilised
the fact that the computational model inserts interambulacral



Fig. 12. Two growth zones, one for A. punctulata and another for S. franciscanus, simulated by changing the parameter aam (aam¼201 for A. punctulata and aam¼311 for

S. franciscanus; other parameters fixed: tpn¼40, agz¼721, apr¼0.05 mm, and psr:apr¼1).
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plates around ambulacral columns and compared values from
simulated specimens to data that were obtained from real speci-
mens. We plotted (plate number, plate width) pairs for interambu-
lacral columns (Fig. 5). In the computational model, plates are
represented as circles, and, thus, comparisons were limited to plate
widths (i.e., circle diameters). Additionally, simulations were con-
ducted under the condition that the apical system and peristome
retained constant sizes, and, thus, comparisons were limited to
qualitative observations, from which correspondence was apparent
(cf. Fig. 5b, c, e and f). For instance, interambulacral plate width
increased with increasing plate number (Fig. 5b, c, e and f).

We also obtained interambulacral-to-ambulacral plate (ia:am)
ratios from simulations. We included in our calculations ambulacral
plate compounding (as real ambulacral plates are fused composites),
whereby three plates were combined to create each ambulacral
plate for A. punctulata and five plates were combined to create each
ambulacral plate for S. franciscanus (Gordon, 1929; Kier, 1974).
Simulations for A. punctulata yielded ia:am¼0.21 and simulations
for S. franciscanus yielded ia:am¼0.18; published ratios (Kier, 1974)
are 0.22 for A. punctulata and 0.12 for S. franciscanus.

We also used the computational model to predict ambitus
position. We hypothesised a priori that the ambitus was located
half way along a growth zone (i.e., equidistant, as measured from
the polar region centres) and set that as an initial condition for
simulations. Plate width increased with increasing distance from
either pole, reaching a maximum at the ambitus. Maximum
measured plate width for A. punctulata occurred at a distance
between 62% and 68% from the apical system centre (Fig. 13a) and
maximum predicted plate width occurred at a distance between
47% and 61% (Fig. 13b). Maximum measured plate width for
S. franciscanus occurred at a distance between 55% and 65% from
the apical system centre (Fig. 13c) and maximum predicted plate
width occurred at a distance between 48% and 59% (Fig. 13d).
Although we set the initial condition for the ambitus to be exactly
equidistant from either pole (i.e., at a distance exactly 50% from
the apical system), through emulated growth processes, the
ambitus position deviated to different locations in simulations.

4.2. Growth zones aam–psr:apr–apr:cl

We expanded our analysis to test the analogies used for plate
interaction and plate gapping. We simulated four growth zones,
one each for E. thouarsii (Cidaroida), A. punctulata, S. franciscanus,
and M. quinquiesperforata (Clypeasteroida) because they exhibit
diverse test morphologies (from tall-globose in E. thouarsii, to flat-
discoid in M. quinquiesperforata). For these simulations, three
parameters were fixed: tpn¼40, agz¼721, and apr¼0.05 mm. For
E. thouarsii, we used aam¼161, psr:apr¼1.33, and apr:cl¼0.18.
For A. punctulata, we used aam¼201, psr:apr¼1.97, and apr:cl¼0.14.
For S. franciscanus, we used aam¼321, psr:apr¼2.5, and apr:cl¼0.09.
For M. quinquiesperforata, we used aam¼391, psr:apr¼0.53, and
apr:cl¼0.04. All values used were obtained from measured data
that we acquired from real specimens.

Simulated growth zones (Fig. 14) resembled growth zones
in real specimens. Plate gaps were simulated for E. thouarsii,
A. punctulata, S. franciscanus, and M. quinquiesperforata (Fig. 14a–d,
respectively—with plates represented by close-packed circles). Plate
interactions, where circles overlapped according to the bubble



Fig. 13. Measured and predicted plate width values plotted against relative

distance from the apical system for an interambulacral column (as a proportion).

Columns are depicted on the basis of total plate number, shown as a single curve

in the plot. A. punctulata (a) measured plate width values from specimens

containing 12–15 ia plates, with maximum plate width occurring at a distance

between 62% and 68% of growth zone length; (b) predicted plate width values

from simulation producing specimen containing 8–12 ia plates, with maximum

plate width occurring at a distance between 47% and 61% along growth zone

length. S. franciscanus (c) measured plate width values from specimens containing

12–20 ia plates, with maximum plate width occurring at a distance between 55%

and 65% along growth zone length; (d) predicted plate width values from

simulation producing specimen containing 12–18 ia plates, with maximum plate

width occurring at a distance between 48% and 59% along growth zone length.

Fig. 14. Simulated growth zones for E. Thouarsii, A. punctulata, S. franciscanus, and

M. quinquiesperforata (parameter values are listed in the text). Plate gapping is

shown in (a–d). Plate interaction is shown in (e–g).
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analogy, yielded realistic plate shapes and plate boundary curva-
tures (Fig. 14). Each growth zone is associated with an apical system
(top) and a peristome (bottom) at either polar region. The sizes for
these regions are determined by psr:apr and apr:cl.

4.3. Limitations

The computational model is limited in at least six aspects. First,
plates are analogised as bubbles and are represented as circles, so
only plate widths could be compared between simulated and real
specimens (Sections 3 and 4); the bubble analogy and geometric
representation are used in a purely geometric sense to simulate
morphological patterns produced by emulated growth processes
(i.e., surface tension might play no role in echinoid growth; Raup,
1968). Second, in the computational model, new plates may be
added in quartets (i.e., with each ocular plate accommodating two
nucleation points for ambulacral plates and two nucleation points for
flanking interambulacral plates, alternating for each plate addition
step; Section 3.2) or in pairs (i.e., exclusively to one column type,
such as ambulacral, whereupon interambulacral plates are added to
populate interambulacral columns; Section 4.1); in real specimens,
locations and numbers for new plate nucleation points are unknown
and new plates are added at different rates throughout development
(Gordon, 1926; Raup, 1968; Smith, 1984). Third, in the computa-
tional model, a single growth zone is simulated (Section 4.1); in real
specimens, 5 growth zones develop simultaneously and typically
differ from one another. Fourth, biserial column morphologies are
produced (four columns constituting a growth zone); among real
specimens, this would accommodate only some echinoid test
morphologies—most Palaeozoic echinoid tests have more than four
columns in a growth zone (Smith, 2005). Fifth, the computational
model simulates circles representing bubbles, which are added
together in enumerating plates; real ambulacral plates in extant
echinoids are fused composites. Sixth, echinoid tests comprise
5 growth zones, associated in three dimensions; the computational
model involves two-dimensional projections.
5. Conclusion

Growth zones for A. punctulata and for S. franciscanus were
generated by varying only a single parameter, the ambulacral
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column angle (aam¼221 and aam¼321, respectively; Section 4.1).
Therefore, ambulacral column angle is a parameter that can
distinguish species; herein, it determined different plate sizes
and, therefore, different simulated morphologies, representing
two species. Changes in plate size, even to a single plate,
stimulates changes in surrounding regions. We showed that
ocular plate size is influenced by ambulacral column angle, which
then influences the position and size for new plates added to the
corona (Sections 3 and 4).

In the computational model, any shift in plate location stimu-
lated a change (increase or decrease) in plate size. Simulations
produced plate patterns corroborating observed trends (e.g., plate
size increases with increasing distance from polar regions, max-
imising at the ambitus; Section 3.1). More importantly, using one
parameter, we were able to simulate test morphologies mimick-
ing patterns produced by growth processes for two different
species (Sections 3 and 4).

A prospective direction for additional development with Holo-
testoid involves including the indirect macrostructural ontogenic
process visceral growth. Visceral growth involves the integrated
effects imparted by somatic growth onto skeletal structures
(Deutler, 1926; Gordon, 1926, 1927, 1929; Hyman, 1955; Moss
and Meehan, 1968; Ellers and Telford, 1992). Previous models
that included visceral growth qualitatively described echinoid
test shapes (e.g., Thompson, 1917; Moss and Meehan, 1968;
Seilacher, 1979; Baron, 1990, 1991; Ellers, 1993; Zachos, 2009).
In some cases, mathematical relations were utilised to associate
with visceral growth mathematical curves that describe test
outlines. For example, the Young–Laplace equation was consid-
ered previously by Thompson (1917), in the liquid drop model,
and Ellers (1993), in the membrane model (the membrane model
was found to be limited in its application, simulating inaccurately
test outlines characterising Cidaroida and Irregularia).

Holotestoid is designed to implement any mathematical func-
tion to represent visceral growth (e.g., parabolic or hyperbolic).
Catenary chains constitute one function that we have explored
(Abou Chakra, 2010). Catenaries describe the shapes that would
be assumed by an inextensible but flexible chain that hangs freely
from two fixed points at equal heights (Bernoulli, 1691; Huygens,
1691; Leibniz, 1691; Yates, 1959) and have been associated with
natural growth and form patterns, such as tree trunks, dental
arches, and spider-webs (Witt and Reed, 1965; BeGole, 1981;
Harker, 1996). As is the case with applying any function, suitable
justifications, empirical and biological, are requisite before caten-
aries may be included formally in Holotestoid.

The ability to simulate different species is useful especially for
echinoids because they exhibit a rich fossil history, and some fossil
species descriptions are based on a single incomplete specimen
(Kier, 1977; Smith, 2005). For such incomplete specimens, Holotes-
toid becomes useful because researchers can make inferences about
test growth, using only a few measurements to estimate parameters
and run simulations (i.e., to reconstruct graphically entire speci-
mens). We are confident that Holotestoid is a useful tool for
describing and explaining the evolutionary-developmental changes
and morphological disparity that are observed among echinoid tests.
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