Max Planck Institute for Evolutionary Biology
Department of Evolutionary Ecology
August-Thienemann-Strasse 2, 24306 Plön, Germany
Phone: +494522763262
Email address: benesh@evolbio.mpg.de
Postdoctoral researcher - 2007-present
Max Planck Institute for Evolutionary Biology, Plön, Germany
Research focus: The evolution of complex parasite life cycles
M.S. and Ph.D - 2004-2007
University of Jyväskylä, Finland
Thesis topic: Larval life history strategies of an acanthocephalan parasite
B.S. - 2000-2004
University of Nebraska, Lincoln, U.S.A.
Major: Biological Sciences, Minors: Philosophy and Entomology
My CV
In general, I am interested in the evolutionary ecology of helminth (=worm) parasites. My recent research has focused on the evolution of complex parasite life cycles and addresses two main questions: 1) why and how do these life cycles evolve and 2) how do parasites successfully complete their life cycles.
1. Many parasites, including some of medical and veterinary importance, obligatorily use several hosts in their life cycle. At first glance, complex life cycles are puzzling, because a simple, one-host life cycle seems intuitively easier to complete. However, there are potential advantages for parasites associated with a complex life cycle, such as avoiding mortality from predation, achieving higher transmission rates, reaching a larger size at maturity, and increasing the probability to find a mate, but such benefits have rarely been shown in practice. Both experiments and cross-species comparative analyses are used to test optimality models and identify the important factors shaping life cycle complexity
2. How should parasites divide their life among their multiple hosts? What are the costs and benefits determining how long and how much should parasites grow before switching hosts? To address these questions, I have used the tapeworm Schistocephalus solidus as a model system. This parasite has three hosts in its life cycle (a copepod, a stickleback, and a piscivorous bird). The bird final host can be replaced with an in vitro system, permitting the whole life cycle to be conveniently run in the laboratory. The ability to breed worms also allows us to address questions that are intractable for most parasites, e.g. what is the genetic architecture of the life cycle and are there genetic-tradeoffs between performance in the intermediate and definitive hosts?
Contact me for pdfs or download them from my ResearchGate profile.
Check out my citation statistics here.
Benesh, D.P. 2013. Parental effects on the larval performance of a tapeworm in its copepod first host. Journal of Evolutionary Biology 26 (8): 1625-1633. doi: 10.1111/jeb.12165
Henrich, T., Benesh, D.P., and Kalbe, M. 2013. Hybridization between two cestode species and its consequences for intermediate host range. Parasites & Vectors. 6: 33. doi: 10.1186/1756-3305-6-33
Benesh, D.P., Chubb, J.C., and Parker, G.A. 2013. Complex life cycles: why refrain from growth before reproduction in the adult niche? The American Naturalist 181: 39-51. doi: 10.1086/668592
Weinreich, F., Benesh, D.P, and Milinski, M. 2013. Suppression of predation on the intermediate host by two trophically-transmitted parasites when uninfective. Parasitology 140: 129-135. doi: 10.1017/S0031182012001266
Benesh, D.P. and Hafer, N. 2012. Growth and ontogeny of the tapeworm Schistocephalus solidus in its copepod first host affects performance in its stickleback second intermediate host. Parasites & Vectors 5: 90. doi: 10.1186/1756-3305-5-90
Benesh, D.P., Weinreich, F., and Kalbe, M. 2012. The relationship between larval size and fitness in the tapeworm Schistocephalus solidus: bigger is better? Oikos 121: 1391-1399. doi: 10.1111/j.1600-0706.2011.19925.x
Benesh, D.P., Chubb, J.C., and Parker, G.A. 2011. Exploitation of the same trophic link favors convergence of larval life history strategies in complex life cycle helminths. Evolution 65: 2286-2299. doi: 10.1111/j.1558-5646.2011.01301.x
Benesh, D.P. 2011. Intensity-dependent host mortality: what can it tell us about larval growth strategies in complex life cycle helminths? Parasitology 138: 913-925. doi: 10.1017/S0031182011000370
Benesh, D.P. 2010. What are the evolutionary constraints on larval growth in a trophically-transmitted parasite? Oecologia 162: 599-608. doi: 10.1007/s00442-009-1507-6.
Benesh, D.P. 2010. Developmental inflexibility of larval tapeworms in response to resource variation. International Journal for Parasitology 40 (4): 487-497. doi: 10.1016/j.ijpara.2009.10.001
Benesh, D.P., Seppälä, O., and Valtonen, E.T. 2009. Acanthocephalan size and sex affect the modification of intermediate host coloration. Parasitology 136 (8): 847-854. doi: 10.1017/S0031182009006180
Hasu, T., Benesh, D.P., and Valtonen, E.T. 2009. Differences in parasite susceptibility and cost of resistance in naturally exposed and unexposed host populations. Journal of Evolutionary Biology 22 (4): 699-707. doi: TT10.1111/j.1420-9101.2009.01704.x
Benesh, D.P., Hasu, T., Seppälä, O., and Valtonen, E.T. 2009. Seasonal changes in host phenotype manipulation by an acanthocephalan: time to be transmitted? Parasitology 136 (2): 219-230. doi: 10.1017/S0031182008005271
Seppälä, O., Valtonen, E.T., and Benesh, D.P. 2008. Host manipulation by parasites in the world of dead-end predators: adaptation to enhance transmission? Proceedings of the Royal Society B 275: 1611-1615. doi: 10.1098/rspb.2008.0152
Benesh, D.P., Valtonen, E.T., and Seppälä, O. 2008. Multidimentionality and intra-individual variation in host manipulation by an acanthocephalan. Parasitology 135 (5): 617-626. doi: 10.1017/S0031182008004216
Benesh, D.P., Kitchen, J., Pulkkinen, K., Hakala, I., and Valtonen, E.T. 2008. The effect of Echinorhynchus borealis (Acanthocephala) infection on the anti-predator behavior of a benthic amphipod. Journal of Parasitology 94 (2): 542-545. doi: 10.1645/GE-1380.1
Benesh, D.P., Valtonen, E.T., and Jormalainen, V. 2007. Reduced survival associated with precopulatory mate guarding in male Asellus aquaticus (Isopoda). Annales Zoologici Fennici 44 (6): 425-434.
Benesh. D.P. and Valtonen, E.T. 2007. Effects of Acanthocephalus lucii (Acanthocephala) on intermediate host survival and growth: implications for exploitation strategies. Journal of Parasitology 93 (4). 735-741. doi: 10.1645/GE-1093R.1
Benesh. D.P. and Valtonen, E.T. 2007. Proximate factors affecting the larval life history of Acanthocephalus lucii (Acanthocephala). Journal of Parasitology 93 (4). 742-749. doi: 10.1645/GE-1094R.1
Benesh, D.P. and Valtonen, E.T. 2007. Sexual differences in larval life history traits of acanthocephalan cystacanths. International Journal for Parasitology 37 (2): 191-198. doi: 10.1016/j.ijpara.2006.10.002
Benesh, D.P., Hasu, T., Suomalainen, L.R., Valtonen, E.T., and Tiirola, M. 2006. Reliability of mtDNA in an acanthocephalan: the problem of pseudogenes. International Journal for Parasitology 36 (2): 247-254. doi: 10.1016/j.ijpara.2005.09.008
Benesh, D.P., Duclos, L.M., and Nickol, B.B. 2005. Behavioral response of amphipods harboring Corynosoma constrictum (Acanthocephala) to various components of light. Journal of Parasitology 91 (4): 731-736. doi: 10.1645/GE-440R.1