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Evolution of cooperation in stochastic games
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Social dilemmas occur when incentives for individuals are 
misaligned with group interests1–7. According to the ‘tragedy of 
the commons’, these misalignments can lead to overexploitation 
and collapse of public resources. The resulting behaviours can 
be analysed with the tools of game theory8. The theory of direct 
reciprocity9–15 suggests that repeated interactions can alleviate 
such dilemmas, but previous work has assumed that the public 
resource remains constant over time. Here we introduce the idea 
that the public resource is instead changeable and depends on 
the strategic choices of individuals. An intuitive scenario is that 
cooperation increases the public resource, whereas defection 
decreases it. Thus, cooperation allows the possibility of playing a 
more valuable game with higher payoffs, whereas defection leads 
to a less valuable game. We analyse this idea using the theory of 
stochastic games16–19 and evolutionary game theory. We find that 
the dependence of the public resource on previous interactions can 
greatly enhance the propensity for cooperation. For these results, 
the interaction between reciprocity and payoff feedback is crucial: 
neither repeated interactions in a constant environment nor single 
interactions in a changing environment yield similar cooperation 
rates. Our framework shows which feedbacks between exploitation 
and environment—either naturally occurring or designed—help to 
overcome social dilemmas.

The tragedy of the commons leads to the question of how to manage 
and conserve public resources1–8. Any solution to this problem requires 
an understanding of which processes drive human cooperation and 
how institutions, norms and other feedback mechanisms can be used 
to reinforce positive behaviours20. These questions are often explored 
by analysing stylized social dilemmas, such as the public goods game21 
or the collective-risk dilemma22, that provide valuable insights into the 
dynamics of cooperation in controlled settings. When subjects interact 
in such games over multiple rounds, it is typically assumed that the 
public good remains constant in time, independent of the outcome of 
previous interactions9–15. Here, we explore the emergence of reciprocity 
when strategic choices in one round affect game payoffs in subsequent 
rounds. We introduce a framework that allows us to capture the idea that 
humans affect and are affected by the value of the public resource, and 
that they are able to anticipate and to adapt to such endogenous changes.

Our approach is based on the theory of stochastic games16,17. A 
group of players can find itself in one of multiple states (Fig. 1). The 
different states capture how the present physical or social environment 
affects the feasible actions of the players and their payoffs. The theory of  
stochastic games16–19 has applications in computer science23,24, industrial  
organization, capital accumulation and resource extraction17.

We consider stochastic games where, in each state, players interact in a 
social dilemma with different payoff values. The decision by the players  
of whether to cooperate or to defect not only affects their current  
payoffs but also the game that will be played in the next round. In 
Fig. 1 we illustrate a scenario that reflects the tragedy of the commons. 
Mutual cooperation improves the quality of the public resource, leading  
the players to interact in game 1 with comparably high payoffs. Partial 
defection leads to a deterioration of the resource; players move to 
game 2 where payoffs are lower. The stochastic game is played for 

many rounds. Transitions between different states can be stochastic or 
deterministic, state-dependent or state-independent. The well-studied 
framework of repeated games is a special case of stochastic games with 
only one state.

The effect of changing environments on evolutionary dynamics has 
been explored previously in one-shot, non-repeated games, not using 
the theory of stochastic games25–29 (see Supplementary Information, 
section 1.1). In some scenarios, the co-evolution of the players’ strategies  
and their environment can lead to oscillations between cooperators 
and defectors27,28. But if cooperators are at a disadvantage in every 
environment, environmental feedback is ineffective to prevent coop-
erators from going extinct (Supplementary Information). One-shot 
models assume that players consider only their present payoff when 
making strategic choices. In stochastic games, players take a long-term 
perspective instead. To find optimal strategies, they need to consider 
how their actions affect the response of their opponents and the future 
state of the environment. As we show, this interplay between reciprocity 
and payoff feedback can be crucial for cooperation.

Traditionally, work on stochastic games considers rational players 
who can employ arbitrarily complex strategies, but does not focus on 
the dynamics of how players adapt their strategies. We introduce an  
evolutionary perspective to stochastic games. Players do not need to act 
rationally, but instead they experiment with available strategies and imitate  
others depending on success30. We use simple strategies that are easy to 
implement and to interpret8. Such an evolutionary set-up has proved 
useful to understand the dynamics of cooperation in repeated games8–13.

We first study a stochastic game with two states (Fig. 2). Individuals 
use pure ‘memory one’ strategies whereby a player’s move depends 
on only the present state and the outcome of the previous round 
(see Methods and Supplementary Information for details). We compare 
the stochastic game with the two associated repeated games where the 
same game occurs every round (Fig. 2). We consider two-player inter-
actions that represent prisoner’s dilemmas, as well as n-player public- 
goods games. In both cases, cooperation entails a cost c > 0. In the 
prisoner’s dilemma, cooperation yields a benefit bi > c to the co-player, 
where bi depends on the state i. In the public goods game, aggregated 
costs are multiplied by a factor ri (with 1 < ri < n depending on state i),  
and redistributed among all players. Game 1 is more profitable than 
game 2 if b1 > b2 or r1 > r2. Players find themselves in game 1 only if 
everyone has cooperated in the previous round. Our simulations show 
that this feedback can boost cooperation markedly. For reasonable  
parameters, the stochastic game populations adapt quickly towards full 
cooperation, although neither of the two repeated games alone yields 
substantial cooperation levels.

In the stochastic game, cooperation evolves because defectors lose 
out twice: once, because they risk receiving less cooperation from recip-
rocal co-players in future and second, because players collectively move 
towards a less beneficial game. The stochastic game is most effective in 
boosting cooperation if the benefit in game 1 is intermediate (Extended 
Data Fig. 1). If b1 is too low, the double loss present in the stochastic 
game is not sufficient to incentivize mutual cooperation, whereas if b1 is 
high, players cooperate in the first game anyway. Stochastic games can 
lead to cooperation even if all individual repeated games fail.
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We derive a condition for the stability of cooperation in stochastic 
games with two states and state-independent transitions. A numerical 
analysis for the two-player case suggests that full cooperation emerges 
when win-stay lose-shift9 (WSLS) becomes stable (Extended Data 
Figs. 2, 3). This strategy prescribes cooperation in the next round if 
and only if both players used the same action in the previous round. In 
a conventional repeated prisoner’s dilemma, WSLS is a Nash equilib-
rium if b ≥ 2c (ref. 8). In the stochastic game, WSLS is an equilibrium if

− + − + ≥q q b q q b c(2 ) (1 2 ) 2 (1)2 0 1 2 0 2

where the parameters qi refer to the conditional probability that the 
players will be in game 1 in the next round given that i of them have 
cooperated in the present round. If mutual cooperation leads to game 
1 and mutual defection to game 2, then q2 = 1 and q0 = 0. Therefore, 
WSLS is stable if 2b1 − b2 ≥ 2c. Because b1 > b2, this condition is 
easier to satisfy than the respective conditions for the two associated 
repeated games.

The condition in equation (1) highlights the fact the that the stability 
of cooperation depends on how the states change given the players’ 
decisions. To explore the effect of this exogenous feedback system-
atically, we perform simulations for all eight deterministic and state- 
independent two-state games (Extended Data Fig. 2). In six of the eight 
cases, players spend more time in the profitable game 1. But only in 

two of them do players actually cooperate. In line with equation (1), 
cooperation evolves only if q2 = 1 and q0 = 0, with q1 being irrelevant. 
Stochastic games are most effective in promoting cooperation if mutual 
cooperation improves the public good while mutual defection deterio-
rates it—a natural scenario. Analogous conclusions hold for multiplayer 
interactions (Extended Data Figs. 4, 5).

Probabilistic transitions can further enhance the evolution of coop-
eration. In Fig. 3a, mutual cooperation in game 2 leads back to game 
1 with probability q. The optimal value of q is intermediate: players 
should have some chance to return to the better state, but it should not 
be too easy (see also Extended Data Fig. 6). In Fig. 3b, the length of the 
game is not exogenously given, but affected by the players’ decisions. 
Individuals start in state 1, in which they play a conventional prisoner’s 
dilemma; if one or both players defect, then there is some probability  
q that players move towards state 2, in which no further profitable 
interactions are possible. This form of environmental feedback pro-
motes cooperation; payoffs become maximal for small but positive q 
(Extended Data Fig. 7). In Fig. 3c we consider a model with timeout. 
Defection leads to a temporal state in which no profitable interactions 
are possible. The return probability to the regular game is q. We derive 
adaptive dynamics for simple reactive strategies (x, y), where x denotes 
the cooperation probability after having been in state 1 previously and 
y is the cooperation probability after having been in timeout. We find 
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Fig. 1 | In stochastic games, the decisions made by players in one round 
determine the game that will be played next round. a, For example, 
if some players defect in a public-goods game, then the environment 
could deteriorate and thereby reduce the value of the public good. If all 
cooperate, then the environment could recover and the original value of 
the public good might be restored. The different states of the environment 
correspond to the different games that can be played. In this illustration, 
we show two public-goods games with r1 > r2. b, A stochastic game 
is deterministic if the players’ actions and the current game uniquely 
determine the game that will be played next round. It is state-independent 
if the game in the next round depends on only the players’ actions, not the 
current game (state). Thus, we distinguish four different types of stochastic 
game, depending on whether transitions are deterministic or probabilistic 
(where p and 1 – p indicate the probability of making the respective 
transition), and whether they are state-independent or state-dependent. 
We note that even a game that involves only deterministic transitions is 
referred to as a ‘stochastic’ game, because it represents a special case of the 
framework.
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Fig. 2 | Stochastic games can promote cooperation even if all individual 
games favour defection. a, b, We study the repeated prisoner’s dilemma, 
which is a two-player game (a), and the repeated public-goods game 
(PGG), which is interpreted here as a four-player game (b). In both cases, 
the first game has a higher benefit from cooperation than the second game. 
Arrows represent the possible transitions, and the arrow labels indicate 
the number of co-operators (‘C’) required for the respective transition. 
The two-player games are represented by their payoff matrices. In the 
stochastic game, if all players cooperate then the next round will be the 
first game, but if some players defect (‘D’) then the next round will be the 
second game. In the standard repeated games, the same game is used in 
every round. An analysis based on evolutionary dynamics reveals that 
each of the standard repeated games fails to support cooperation, whereas 
the stochastic game favours cooperation. The time axis corresponds 
to the number of mutant strategies introduced into the population 
(see Methods). Parameter values: a, b1 = 2, b2 = 1.2, c = 1; b, r1 = 1.6, 
r2 = 1.2, c = 1.
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that the fully cooperative strategy (1, 1) can become stable, although 
unconditional cooperation is never stable in a conventional repeated 
prisoner’s dilemma.

Next we explore the ideal feedback between game payoff and strategic 
choice. We consider a stochastic game with four players and five states. 
Defection by a subgroup of players has an immediate, gradual or delayed 
negative impact on the benefits of cooperation, or no effect (Fig. 4). We 
obtain the highest cooperation rates for immediate negative impact. 
The intuitive explanation is as follows: maximum cooperation arises 
if the players are most incentivized to cooperate in the most valuable  
game. In the immediate scenario, any deviation from cooperation in 

game 1 leads to a game with the lowest payoff. Interestingly, even the 
scenario with a delayed response promotes higher cooperation rates 
than the game in which the public good remains unchanged across all 
states. The lowest cooperation rates are obtained when the benefits of 
cooperation are high in all five games. We obtain similar conclusions for 
a state-dependent game in which it takes several successive rounds of 
mutual defection to end up in the worst state (Extended Data Figs. 8, 9).

Direct reciprocity is a mechanism for the evolution of cooperation 
based on repeated interactions. The standard assumption has been that 
the same game, with the same payoff, is played again and again. We 
have introduced the concept that the game payoff changes in different 
rounds. We explore cases in which cooperation leads to a more valuable 
game next round and defection to a less valuable one. Surprisingly, 
we find that this setting boosts cooperation markedly. In the resulting 
stochastic game, cooperation can prevail even if it is unsuccessful in 
all individual repeated games. Our observations suggest how naturally 
occurring or designed feedback can promote cooperation. A tragedy of 
the commons can be avoided if the environment deteriorates (rapidly) 
as a consequence of defection. Likewise, cooperation is boosted if there 
is the prospect of playing for higher gains should the current coopera-
tion succeed. The evolutionary analysis of stochastic games represents 
a new tool for understanding and influencing human decision-making 
in social dilemmas.

Online content
Any Methods, including any statements of data availability and Nature Research 
reporting summaries, along with any additional references and Source Data files, 
are available in the online version of the paper at https://doi.org/10.1038/s41586-
018-0277-x.
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METHODS
Here we summarize our general framework and the methods that we used. Further 
details are provided in Supplementary Information.
Stochastic games. To describe a stochastic game fully, we need to specify five 
objects: (i) the set of players N , (ii) the set of possible states S, (iii) the set of actions 
A(si) that are available to each player in a given state si, (iv) the transition function 
Q that describes how the current state of the environment and the players’ actions 
in a given round determine the state in the next round, and (v) a payoff function 
u that describes how the payoffs of the players in a given round depend on the 
players’ actions and on the present state. The framework of stochastic games does 
not specify how much time passes between consecutive rounds, nor does it restrict 
the payoffs that are available in each round. The respective model parameters need 
to be chosen with respect to the specific application (see Supplementary 
Information for a detailed description of the framework and how it applies to 
specific examples). Here we have considered scenarios in which players face a strict 
social dilemma in each state, but the framework can easily be adapted to more 
general payoff constellations (Extended Data Fig. 10).

Throughout the main text, we considered simple examples of stochastic games. 
Players can choose between cooperation and defection, and thus their action set 
is {C, D} for each state. Transitions are symmetric: the transition function Q does 
not depend on which of the players has cooperated or defected. The payoffs per 
round are symmetric and in the two-player case given by payoff matrices. The 
payoff of a player in the stochastic game is defined as the player’s discounted payoff 
per round over infinitely many rounds. Initially, players are in state 1. Here we 
focus on stochastic games that take place in discrete time, but continuous-time 
stochastic games have also been considered31 (see Supplementary Information 
for a more detailed discussion).
Memory-one strategies. In general, strategies for stochastic games can be arbi-
trarily complex. A player’s action in a given round may depend on the present state 
and on the whole previous history. To facilitate an evolutionary analysis, we focus 
on comparably simple strategies32–39: players take into account only the present 
state and the outcome of the previous round. For n-player games with m states, 
such ‘memory one’ strategies can be written as a 2nm-dimensional vector =p p( )a j

i
, , 

with i ∈ {1, 2, …, m}, j ∈ {0, 1, …, n − 1} and a ∈ {C, D}. Each entry pa j
i
,  represents 

the player’s probability of cooperating in a given round, given that the present state 
is si and that in the previous round the focal player chose action a ∈ {C, D}, while 
j of the n − 1 other group members cooperated. In Supplementary Table 1, we 
present several examples of memory-one strategies for stochastic games.

When all players use memory-one strategies, the dynamics of a stochastic game 
can be described by a Markov chain with m2n possible states (s1, C, …, C), …,  
(sm, D, …, D). In this notation, the first entry refers to the state of the public good in 
a given round and the other n entries refer to the players’ actions. Using the theory 
of Markov chains, we compute the players’ expected payoffs (see Supplementary 
Information).
Evolutionary dynamics. To describe how individuals adopt new strategies over 
time, we consider a standard imitation process30. There is a population of size N. 
Each member of the population is equipped with a memory-one strategy that 
prescribes how the individual plays the stochastic game. In each evolutionary time 
step, every player interacts with every other player to derive a payoff from the 
stochastic game. Then, two individuals are drawn randomly from the population, 
a learner and a role model. The payoffs of those two individuals are πL and πR, 
respectively. The learner adopts the strategy of the role model with probability 
ρ = / + β π π− −1 [1 e ]( )R L . The parameter β ≥ 0 corresponds to the intensity of  

selection. For β = 0, we have random drift. For β > 0, imitation events are biased 
in favour of strategies that yield higher payoffs. In addition to imitation events, we 
allow for random strategy exploration, which corresponds to mutations: with prob-
ability µ an individual adopts a randomly chosen memory-one strategy instead of 
imitating a co-player. We analyse the ergodic mutation–selection process using 
computer simulations. We obtain exact numerical results when exploration events 
are rare.
Specific methods used for individual figures. Except for the results in Fig. 3c, 
the main text considers examples in which players use pure memory-one  
strategies, subject to small errors (such that pa j

i
,  is either ε or 1 − ε, with ε = 0.001). 

Further simulations using stochastic memory-one strategies confirm that the 
respective results are robust (Extended Data Fig. 1b). Except for the stochastic 
game in Fig. 3b, we assume that future payoffs are not discounted, δ → 1. For the 
evolutionary trajectories of Fig. 2, we averaged over 100 simulations for the sce-
nario with rare mutations. Our numerical results use population size N = 100, 
intermediate selection (β = 1) for pairwise games and strong selection for  
multiplayer games (β = 100 in Fig. 2b and β = 10 in Fig. 4). Our qualitative 
findings are robust with respect to parameter changes (Extended Data Fig. 1). For 
the results in Fig. 3a, b and 4 we report exact results in the limit of rare muta-
tions40. Figure 3c shows the phase portrait of adaptive dynamics8 for the game 
with timeout; the corresponding differential equation is derived in Supplementary 
Information.
Code availability. All simulations and numerical calculations were performed with 
MATLAB R2014A. In Supplementary Information (see appendix), we provide an 
algorithm that can be used to calculate payoffs in stochastic games with n players 
and two states. All other scripts are available from the authors on request or at 
https://doi.org/10.5281/zenodo.1287718.
Data availability. The raw data generated, which were used to create Figs. 2–4, 
have been uploaded along with the MATLAB code and are available at https://doi.
org/10.5281/zenodo.1287718.
Reporting summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this paper.
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Extended Data Fig. 1 | Our findings are robust with respect to 
parameter changes. To test the robustness of our findings, we consider 
the stochastic game introduced in Fig. 2a and independently vary several 
key parameters. a, b, When we vary the benefit of cooperation in state 
1, we find that the advantage of the stochastic game is most pronounced 
when this benefit is intermediate, 1.5 ≤ b1 ≤ 2.5. This conclusion holds 
independently of whether individuals use pure strategies only (a) or 
stochastic ones (b). c–f, We obtain similar results when we vary the error 
rate ε (c), the strength of selection β (d), the discount factor δ (e) and the 

mutation rate µ (f). In all cases, we observe that stochastic games yield a 
cooperation premium, provided that errors are sufficiently rare, selection 
is sufficiently strong, players give sufficient weight to future payoffs 
and mutations are comparably rare. Solid lines indicate exact results in 
the limit of rare mutations, whereas square symbols and dashed lines 
represent simulation results (see Supplementary Information for details). 
Filled circles highlight the results obtained for the parameters in Fig. 2a. 
As default parameters, we used the same values as in Fig. 2a: N = 100, 
b1 = 2.0, b2 = 1.2, c = 1, β = 1, ε = 0.001, δ → 1 and µ → 0.
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Extended Data Fig. 2 | Whether cooperation evolves in two-player 
games depends critically on the form of the environmental feedback. 
Keeping the game parameters fixed at the values used in Fig. 2a, we 
explored how the evolution of cooperation depends on the underlying 
transition structure of the stochastic game in the limit of rare mutations 
(see Supplementary Information). a–h, We calculated the selection–
mutation equilibrium for all possible stochastic games with two states 
when transitions are state-independent and deterministic. i, Overall, six 
of the eight transition structures lead players to spend more time in the 

more profitable state 1, in which mutual cooperation has a higher benefit. 
j, However, cooperation evolves in only two out of these six transition 
structures. These two structures have in common that mutual cooperation 
always leads to the beneficial state 1, whereas mutual defection leads 
to the detrimental state 2. Thus, cooperation is most likely to evolve if 
the environmental feedback itself incentivizes mutual cooperation and 
disincentivizes mutual defection. The transitions after unilateral defection 
have a less prominent role.
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Extended Data Fig. 3 | Analysis of the evolving strategies suggests that 
the evolution of cooperation hinges on the success of WSLS. Here, 
we consider all state-invariant and deterministic stochastic games with 
two states and two players. a–h, For each of the eight possible cases, we 
recorded the evolving cooperation rate (lower plots) and the relative 
abundance of each pure memory-one strategy (upper plots) for different 
values of b1. For clarity, we depict only two memory-one strategies 
explicitly, All D (the strategy that prescribes to always defect) and WSLS. 
The colour-shaded bars on top of the upper plots show parameter regimes 

in which either All D or WSLS is most abundant among all 16 strategies. 
In four of the eight cases, we observe that full cooperation evolves as the 
benefit to cooperation in state 1 approaches b1 = 3. These are exactly 
the cases in which mutual cooperation leads players towards the more 
beneficial state 1. Moreover, in these four cases the upper plots show 
that cooperation emerges owing to the success of WSLS, which is the 
predominant strategy whenever cooperation prevails. Except for the value 
of b1, all other parameter values are the same as in Extended Data Fig. 2.
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Extended Data Fig. 4 | Effect of transitions on cooperation in four-
player public-goods games. We also explored the effect of different 
transition structures for stochastic games between multiple players (with 
a public-goods game being played in each state). State 1 is again more 
beneficial because r1 > r2, but to be in state 1 there must be a minimum 
number k of cooperators in the previous round. a–f, For a four-player 
public-goods game, there are six possible monotonic configurations of 
the stochastic game because k can be any number from 0 (players always 

move to first state) to 5 (players never move to first state). h, There is a 
non-monotonic relationship between the six transition structures and 
the time spent in the more beneficial state 1. g, The evolving cooperation 
rate becomes maximal when any deviation from mutual cooperation 
leads players to state 2 (e). Parameters are as in Fig. 2b, but with the 
multiplication factor in the first state fixed to r1 = 2 and selection strength 
β = 1; to derive exact results, we considered the limit of rare mutations 
µ → 0 (see Supplementary Information for details).
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Extended Data Fig. 5 | WSLS sustains cooperation in multiplayer 
public-goods games. This figure is analogous to Extended Data Fig. 3 for 
the case of multiplayer interactions. Again, we show evolving cooperation 
rates and the relative abundance of All D and WSLS for the six state-
independent and deterministic games in which transitions are monotonic. 

In five of these games, cooperation emerges once the multiplication factor 
r1 becomes sufficiently large. In all of those, WSLS is the most abundant 
strategy when cooperation evolves. Except for r1, all parameters are the 
same as in Extended Data Fig. 4.
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Extended Data Fig. 6 | Probabilistic transitions can further enhance 
cooperation. a, Here, we explore in more detail the stochastic game 
introduced in Fig. 3a (see Supplementary Information for details), in 
which any defection always leads to state 2. After mutual cooperation in 
state 1, players remain in state 1 with certainty. After mutual cooperation 
in state 2, players move towards state 1 with probability q. b, Calculating 
the cooperation rate in the selection–mutation equilibrium in the limit 
of rare mutations shows that the highest cooperation rate is achieved 
for intermediate values of q. c, We recorded the abundance of all 32 
memory-one strategies in the selection–mutation equilibrium. The most 
abundant strategy is either All D (for small values of q, as indicated by 

the red squares), WSLS (for small but positive values of q, green circles) 
or AWSLS (for all other values of q, yellow triangles; AWSLS is a more 
ambitious variant of WSLS, see Supplementary Information, section 4.1). 
d, To estimate the time that it takes each resident strategy to be invaded, 
we randomly introduced other mutant strategies and recorded how long it 
took until a mutant successfully fixed (that is, the number of independent 
mutant strategies introduced before the mutant strategy was adopted 
by the whole population). To obtain a reliable estimate, we performed 
10,000 runs for each resident strategy. e, f, In addition, we recorded which 
strategy eventually reaches fixation if the resident applies either All D or 
WSLS when q = 1. Parameters: b1 = 1.9, b2 = 1.4, c = 1, β = 1, N = 100.
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Extended Data Fig. 7 | Players benefit from a small endogenous risk 
that the game stops early. a, We consider the stochastic game in Fig. 3b, 
in which players remain in state 1 after cooperation, but move towards 
state 2 with transition probability q if one of the players defects. In state 2, 
no profitable interactions are possible. All results are discussed in detail 
in Supplementary Information; here we provide a summary. b, According 
to our evolutionary simulations, a higher transition probability leads to 
more cooperation. c, However, a higher probability q also makes players 
move to the second state if one of them defected merely owing to an error; 
hence, the dependence of payoffs on q is non-monotonic. d, e, When 

q is small, Grim is the predominant strategy. Players with this strategy 
cooperate until one of the players defects; from then on, they defect 
forever. As q increases, WSLS strategies take over. As q → 1, unconditional 
cooperation becomes most successful. f, For the given parameter values, a 
homogeneous Grim population achieves only one-third of the maximum 
payoff possible, because any error leads to relentless defection. The other 
three strategies result in the maximum payoff b1 − c for q = 0, but this 
payoff decreases with q. Parameters: b1 = 2, c = 1, δ = 0.999, ε = 0.001, 
β = 1, N = 100.
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Extended Data Fig. 8 | Immediate environmental feedback enhances 
cooperation. a, We consider a state-dependent stochastic game with two 
players and three states. Mutual cooperation always leads players to move 
to a superior state (or to remain in the most beneficial state s1). Similarly, 
mutual defection always leads to an inferior state (or players remain in the 
most detrimental state s3). After a unilateral defection, players remain in 
the same state. We consider four different versions of this game, depending 
on how quickly the payoffs decrease as players move towards an inferior 
state. b, Our numerical results show that an immediate negative response 
of the environment to defection is most favourable to the evolution 
of cooperation. c, As a consequence, the scenario with immediate 

consequences also yields the highest average payoffs once the benefit 
in state 1 exceeds a moderate threshold. d–g, On the level of evolving 
strategies, we find that an immediately responding environment is most 
favourable to the evolution of WSLS strategies and strongly selects against 
defecting strategies. Again, the coloured bars on top of each panel indicate 
the strategy that is most favoured by selection for the respective value of 
b1 (see Supplementary Information for all details). Parameters: c = 1; b1 
varies from 1 to 3; b2 is equal to c, (b1 + c)/2 or b1; and b3 is equal to either 
c or b1 depending on the scenario considered (as depicted in a); N = 100, 
β = 1, δ → 1, ε = 0.001.
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Extended Data Fig. 9 | Cooperation in stochastic games requires that 
players take future payoff consequences into account. We repeated the 
numerical computations in Extended Data Fig. 8 for various discount rates 
δ. When players focus entirely on the present (δ = 0), cooperation evolves 
in none of the four treatments. As players increasingly take future payoffs 

into account, cooperation rates increase. Immediate payoff feedback is 
most conducive to cooperation across all values of δ considered. Except for 
the discount rate, parameters are the same as in Extended Data Fig. 8, with 
b1 = 1.8.
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Extended Data Fig. 10 | A systematic analysis of the expected game 
dynamics for different game payoffs. Keeping the two-player game 
in state 2 fixed to the game in Fig. 2a, we varied the game that is played 
in state 1. We assume that payoffs in the first state are 1 (for mutual 
cooperation), S1 (for unilateral cooperation), T1 (for unilateral defection) 
and 0 (for mutual defection). Depending on T1 and S1, game 1 can be 
one of four different types: harmony game (HG), snowdrift game (SD), 
stag-hunt game (SH) or prisoner’s dilemma (PD); see Supplementary 
Information for details. For each of the eight possible state-independent 
transitions q, we systematically varied the temptation payoff T1 (x axis) 
and the sucker’s payoff S1 (y axis) in the first state (see Supplementary 

Information for details). For each combination of T1, S1 and q, we 
computed how often players cooperate in the selection–mutation 
equilibrium (left panels) and in what fraction of rounds they switch  
from one state to the other (right panels). a–c, e, Full cooperation can 
evolve when players find themselves in state 1 after mutual cooperation. 
d, f, Players learn to switch between states only when mutual cooperation 
leads to state 2 and mutual defection leads to state 1. g, h, In the remaining 
cases, players hardly cooperate. The payoffs in game 2 are the same 
as in Fig. 2a—a prisoner’s dilemma with b2 = 1.2 and c = 1. For the 
evolutionary parameters we considered population size N = 100 and 
selection strength β = 1.
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The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection All computations and simulations were performed with with Matlab R2014a. The baseline code is provided in the SI.

Data analysis Results were analyzed and visualized with Matlab R2014a.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The raw data for Figs. 1-4 generated by the MATLAB programs have been uploaded along with the MATLAB scripts, see Code Availability and Data Availability 
statements in the end of the Methods section.  



2

nature research  |  reporting sum
m

ary
April 2018

Field-specific reporting
Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences
For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Theoretical study that employs analytical methods and evolutionary simulations.

Research sample n/a (the manuscript does not contain any empirical data)

Sampling strategy n/a (see above)

Data collection n/a (see above)

Timing and spatial scale n/a (see above)

Data exclusions n/a (no data of any sort was excluded)

Reproducibility n/a

Randomization n/a

Blinding n/a

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging


