Partners and rivals in direct reciprocity

Christian Hilbe1,2,*, Krishnendu Chatterjee2 and Martin A. Nowak1,3

Reciprocity is a major factor in human social life and accounts for a large part of cooperation in our communities. Direct reciprocity arises when repeated interactions occur between the same individuals. The framework of iterated games formalizes this phenomenon. Despite being introduced more than five decades ago, the concept keeps offering beautiful surprises. Recent theoretical research driven by new mathematical tools has proposed a remarkable dichotomy among the crucial strategies: successful individuals either act as partners or as rivals. Rivals strive for unilateral advantages by applying selfish or extortionate strategies. Partners aim to share the payoff for mutual cooperation, but are ready to fight back when being exploited. Which of these behaviours evolves depends on the environment. Whereas small population sizes and a limited number of rounds favour rivalry, partner strategies are selected when populations are large and relationships stable. Only partners allow for evolution of cooperation, while the rivals’ attempt to put themselves first leads to defection.

In the 1950s, when Merrill Flood and Melvin Dresher wanted to test novel solution concepts of game theory22, they asked colleagues at the RAND Corporation to play several rounds of various two-player games1. One of those games had a peculiar quality: by maximizing their own payoffs, players would end up in a situation that is detrimental for both. Since then, the prisoner’s dilemma (PD)1 has become a major paradigm to study strategic behaviour in social dilemmas. It is presented as a game in which two players, say Alice and Bob, can either cooperate or defect (Fig. 1a). If both cooperate, they each get the reward, R, which exceeds the punishment payoff, P, when both defect. But if one player defects while the other cooperates, the defector gets the highest payoff T (temptation), whereas the cooperators end up with the lowest payoff S (the sucker’s payoff). The game is a PD if $T>R>P>S$. No matter what Alice does, Bob maximizes his payoff by defecting. Thus, defection is the only Nash equilibrium.

Pure defection, however, was not the outcome Flood and Dresher observed in their experiment. Instead, their participants seemed to become more cooperative over time. When confronted with these results, John Nash argued that the experimental game was not a PD, but a repeated PD1. Repeated games allow for reciprocity1,2. Players have additional strategic options: they can react to the outcomes of previous rounds, they can reward cooperating co-players by cooperating in the future and they can punish defecting co-players by defecting in the future. Reward and punishment are intrinsic properties of repeated games.

Direct reciprocity is a mechanism for the evolution of cooperation1, based on the concept that my behaviour towards you depends on our previous interactions. To study direct reciprocity, assume that after each round of the PD, there is another one with probability δ. Equivalently, we could assume that there are infinitely many rounds, but future payoffs are discounted by δ. When the game is repeated, the set of feasible strategies is huge. Instead of merely deciding whether to cooperate or to defect in a single interaction, a strategy needs to specify what to do in every round, given the previous history of interactions. To do so, Alice might, for example condition, her next action on whether Bob has cooperated in the previous round. Alternatively, Alice might cooperate if the running average payoffs of the two players fall within a certain range9.

Iterated games and the folk theorem

Repeated interactions allow cooperation to be stable1. To see why, assume Alice and Bob can choose between two possible strategies, always defect (ALLD) and tit-for-tat (TFT) (Fig. 1b). ALLD defects in every round. TFT cooperates in the first round and then does whatever the opponent did in the previous round (Fig. 2). When both players use TFT, they get payoff R in every round. If Alice instead switches to ALLD, she obtains $T>R$ in the first round but $P<R$ in all subsequent rounds. If future interactions are sufficiently likely, Alice’s short-run advantage is not worth her long-term loss.

This logic of reciprocity is simple, but it has been effective for understanding when individuals cooperate under a ‘shadow of the future’. Repeated games have been employed to study topics as diverse as collusion12,13, arms races14,15, food sharing16,17 and predator inspection18. Computer scientists and mathematicians have been interested in the computational complexity of finding best responses19,20.

Although the rules of the game are simple to describe, the outcome is complex to predict. On one hand, the repeated PD allows for many different equilibria. The folk theorem21,22 guarantees that any feasible average payoff can arise in equilibrium, provided that players get at least the mutual defection payoff P (Fig. 1c). On the other hand, in evolving populations, none of those equilibria are evolutionarily stable23,24. For example, if all members of a population apply TFT, individuals using ‘always cooperate’ (ALLC) fare just as well. Thus, ALLC may spread through neutral drift, favouring the subsequent invasion of ALLD25. But ALLD is not evolutionarily stable either; it can be neutrally invaded by suspicious tit-for-tat (STFT), which defects in the first round and plays like TFT thereafter. Once STFT is common, more cooperative strategies can take over. Such neutral, stepping-stone invasions are always possible26,27, unless there is a positive probability of mistakes28,29. Moreover, when the dynamics of strategies in a population are modelled as a stochastic process, chance events during mutation and selection may help a mutant strategy to invade even if it is initially at a disadvantage (Fig. 1d). Cooperation thus comes and goes in cycles28,30. Periods of defection alternate with periods of cooperation, and the respective length of these periods determines how likely we are to observe cooperation over time31–33.9

1Program for Evolutionary Dynamics, Harvard University, Cambridge, MA, USA. 2IST Austria, Klosterneuburg, Austria. 3Department of Organismic and Evolutionary Biology, Department of Mathematics, Harvard University, Cambridge, MA, USA. *e-mail: christian.hilbe@ist.ac.at

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
Fig. 1 | Repeated interactions allow evolution of cooperation. **a**, In a social dilemma, two cooperators get a higher payoff than two defectors, \(R > P \), but there is a temptation to defect. The temptation can come in three forms: \(T > R \), \(P > S \) or \(R > S \). The game is a social dilemma if at least one of those inequalities holds. The PD is the most stringent social dilemma; here all three temptations hold. The PD is defined by the payoff ranking \(T > R > P > S \). **b**, If the PD is repeated with probability \(\delta \), players can use conditionally cooperative strategies such as TFT. TFT yields the mutual cooperation payoff \(R \) against itself, and it is stable against ALLD if \(\delta \) is sufficiently large. **c**, The folk theorem states that for sufficiently large \(\delta \), all payoff pairs in which both players get at least \(P \) can arise in equilibrium. **d**, In stochastic evolutionary dynamics, TFT can invade ALLD. A single TFT mutant can have a fixation probability that exceeds the neutral probability \(1/N \), where \(N \) is the population size \(^{14} \). Parameters: \(N = 10, R = 2, S = -1, T = 3, P = 0 \) and \(\delta = 0.9 \).

Fig. 2 | Eight strategies for the repeated PD. Each strategy is shown as a finite state automaton \(^{34} \). The coloured vertices indicate the player’s next action. The arrows represent transitions between states after each round. The black letters C and D represent the co-player’s action. The arrow from the left points at the initial state. **a**, ALLD always defects. **b**, ALLC always cooperates. **c**, Grim cooperates until the co-player defects once, then it defects forever. **d**, TFT cooperates in the first round, then repeats what the co-player did in the previous round. **e**, TF2T is similar to TFT, but it takes two consecutive defections of the co-player for TF2T to retaliate. **f**, GTFT cooperates in the first round and if the co-player has cooperated in the previous round; it cooperates with probability \(q < q^* \) if the co-player has defected. The threshold \(q^* \) ensures that no other strategy can invade (Box 2). **g**, WSLS cooperates in the first round, and it repeats its own move if the payoff was \(T \) or \(R \); it switches to the other move if the payoff was \(P \) or \(S \). **h**, An extortioner defects in the first round; then defects if both players have defected; cooperates with probabilities \(p_1, p_2 \) or \(p_3 \); if the previous round was \(CC \), \(CD \) or \(DC \), respectively. These probabilities are chosen such that the two players’ payoffs are on a line (Fig. 3a). TF2T requires the player to remember the outcome of the past two rounds; all other depicted strategies are memory-1 strategies.

Classical strategies for the repeated PD

In absence of a universally optimal strategy, research has focused on identifying cooperative strategies that perform well in a broad range of scenarios \(^{15–30} \). The field owes much of its early momentum to Robert Axelrod, who invited experts to submit programmes to play the repeated PD in a computerized round-robin tournament \(^{40} \). The shortest programme, TFT, submitted by Anatol Rapoport \(^1 \), achieved the highest average score, although it did not win any pairwise encounter. Axelrod attributed the success of TFT to four appealing properties: TFT is never the first to defect, it responds to defection by defecting, it returns to cooperation if the co-player does so and it is easy for other players to comprehend it. A recent mathematical analysis has shown that the simple imitation rule employed by TFT makes it ‘ unbeatable ’ in social dilemmas with two actions: against TFT, no opponent can achieve arbitrarily high payoff advantages \(^{31} \). But TFT is not as superior as these results
suggested: its success in Axelrod’s tournament critically depends on the participating strategies and on the methods used to determine the winner60. For example, had the strategy tit-for-two-tats (TF2T) been submitted, it would have won the first tournament60. TF2T only defects if the co-player has defected in the previous two rounds (Fig. 2e). Moreover, a strict retaliator like TFT is unable to correct errors: if players occasionally make mistakes, cooperation between two TFT players breaks down61-63.

An alternative approach to tournaments is to let evolution decide which strategies prevail51,64. Consider a population of players, each one equipped with a specific strategy. Over time, successful strategies spread, either because they reproduce faster or they are imitated more often65-67. In addition, mutation or random exploration introduce novel strategies. When modelling such evolutionary processes for the iterated PD, the enormous number of possible strategies makes it often necessary to constrain the available set of strategies. One assumption is that players are reactive: when deciding whether to cooperate in the next round, they only consider the opponent’s move in the very last round. Reactive strategies are described as a triplet \((x, y, q)\). Here, \(y\) is the probability to cooperate in the previous round, \(p\) is the probability to cooperate if the co-player has cooperated in the previous round and \(q\) is the probability to cooperate if the co-player has defected68. Although reactive strategies contain both ALLD and TFT, stochastic simulations typically favour a more lenient strategy. Evolutionary trajectories often lead from ALLD to TFT and from there to generous tit-for-tat (GTFT)42. When Alice applies GTFT, she always cooperates in the first round and after rounds in which Bob has cooperated. But when Bob defects, Alice still cooperates with some probability \(q > 0\) (Fig. 2f). The probability \(q\) can be chosen sufficiently large to avoid costly vendettas after an error, but low enough to give ALLD no selective advantage69.

The evolutionary dynamics change when players additionally take their own previous move into account. Such memory-1 strategies have the form \((p_S, p_P, p_R, p_T)\), where \(p_R\) again represents a player’s probability to cooperate in the first round, and the other four numbers are the probabilities to cooperate after the outcomes CC, CD, DC, DD, respectively. The first letter represents the previous action of the focal player, the second letter refers to the action of the co-player (where C is cooperate and D is defect). Stochastic memory-1 strategies have been extensively used in evolutionary game theory70-72, They are simple enough to be explored with computer simulations73-75, yet sufficiently complex to encode a variety of interesting behaviours (Fig. 2). Once individuals can choose among all memory-1 strategies, evolution often leads to win-stay, lose-shift (WSLS)76-78. When Alice applies WSLS, she starts with cooperation; thereafter, she repeats her previous action if it yielded at least payoff \(R\) in the previous round. If her payoff was less than \(R\), she switches to the opposite action (Fig. 2g).

WSLS is the only memory-1 strategy that satisfies three simple principles79: it is mutually cooperative, retaliating and error-correcting. That is, WSLS continues to cooperate after mutual cooperation, it retaliates to a co-player’s defection by defecting for at least one round and two WSLS players restore cooperation after at most one round. Due to these principles, WSLS evolves in a wide range of scenarios, provided that mutual cooperation is sufficiently profitable and that the game is iterated for a sufficient number of rounds80-84.

Zero-determinant strategies

While evolutionary game theory traditionally asks which strategies win in evolving populations, Press and Dyson85 recently posed a different question: Are there strategies for Alice with which she wins every pairwise encounter with Bob, irrespective of which strategy Bob uses? Moreover, can she achieve this goal in a way that makes it optimal for Bob to cooperate in every round? Surprisingly, the answer to both questions is yes. The argument involves two steps.

First, Press and Dyson described an intriguing subset of memory-1 strategies, the so-called zero-determinant (ZD) strategies. For the derivation of these strategies, a particular matrix plays an important role, which depends on the players’ memory-1 strategies. If Alice employs a ZD strategy, the determinant of this matrix becomes zero, which explains the curious name of these strategies. More importantly, Press and Dyson observed that by using a ZD strategy, Alice can enforce a linear relationship between her own and Bob’s payoff. The exact shape of this relationship is solely under Alice’s control. Second, they showed that among the ZD strategies there are so-called extortioners. With an extortionate strategy, Alice can guarantee, for example, that she always gets twice the payoff of Bob, whereas Bob can do no better than cooperating in every single round (see Box 1). For that statement to hold, the payoff has to be rescaled such that the payoff for mutual defection is zero.

If Bob is not cooperative from the outset, Alice can employ an extortionate strategy to teach him to cooperate86-90. Suppose that Alice is committed to a fixed strategy, while Bob is willing to adapt. Bob may occasionally change his strategy in response to Alice’s fixed behaviour. When Alice uses an extortionate strategy, any attempt Bob makes to increase his own payoff automatically also increases Alice’s payoff. As Bob adapts, he becomes increasingly cooperative over time. As a result, both players’ payoffs increase, but Alice’s payoff increases by twice as much (Fig. 3a).

After the discovery of extortionate strategies, several studies have explored their general existence81-91, their evolutionary performance83-91 and their relevance for human interactions92-94.
Assume that Alice and Bob interact in a repeated PD with payoffs $T > R > P > S$. For simplicity, we assume there is always another round, $\delta = 1$. Alice uses a memory-1 strategy $(p_\alpha, p_\beta, p_\gamma, p_\delta)$. Bob uses an arbitrary strategy. Suppose that over the course of the entire game between Alice and Bob, the four outcomes CC, CD, DC, DD, occur with relative frequencies v_1, v_2, v_3, v_4. Alice’s probability to switch from cooperation to defection is $(1-p_1)v_1 + (1-p_2)v_2$. Her probability to switch from defection to cooperation is $p_1v_3 + p_2v_4$. Because Alice can only switch from cooperation to defection if she has switched from defection to cooperation before, we obtain Akin’s identity:

\[
(1-p_1)v_1 + (1-p_2)v_2 = p_1v_3 + p_2v_4
\]

(2)

Let us assume Alice uses a particular rule to determine the four probabilities of her memory-1 strategy. She chooses three constants α, β and γ and then takes the four probabilities:

\[
p_1 = \alpha R + \beta R + \gamma + 1
\]

\[
p_2 = \alpha S + \beta T + \gamma + 1
\]

\[
p_3 = \alpha T + \beta S + \gamma
\]

\[
p_4 = \alpha P + \beta P + \gamma
\]

Such a strategy is called zero-determinant (ZD) strategy. From equations (2) and (3) we obtain:

\[
\alpha(R_1 + S_2 + T_3 + P_4) + \beta(R_1 + T_3 + S_2 + P_4) + \gamma = 0
\]

(4)

The expression $R_1 + S_2 + T_3 + P_4$ is exactly Alice’s payoff for the repeated game, π_A. Similarly, $R_1 + T_3 + S_2 + P_4$ is Bob’s payoff, π_B. Thus, if Alice applies a ZD strategy, the payoffs of the two players satisfy:

\[
\alpha \pi_A + \beta \pi_B + \gamma = 0
\]

(5)

Curiously, the values of α, β and γ are solely determined by Alice. In the following, let us assume that the payoffs are normalized such that $P = 0$. Then Alice may set $\alpha = -\beta/2$ and $\gamma = 0$. The remaining parameter β she can choose arbitrarily, subject to the restriction that $\beta \neq 0$ and that the four probabilities in equation (3) satisfy $0 \leq p_i \leq 1$. In that case equation, (5) simplifies to:

\[
\pi_A = 2\pi_B
\]

(6)

Alice earns twice as much as Bob, irrespective of Bob’s strategy. Moreover, if Bob tries to increase his own payoff by using another strategy, he simultaneously always increases Alice’s payoff, too.

ZD strategies with $\alpha = -\beta \lambda$ and $\gamma = \beta(1-1\lambda)$ are called extortionate. The parameter λ with $0 < \lambda < 1$ determines by how much Alice’s payoff exceeds Bob’s. For $P \neq 0$, extortionate strategies enforce $(\pi_A - P) = \frac{1}{\lambda}(\pi_B - P)$. That is, if the two players get a payoff higher than P, Alice gets a disproportionate share of the surplus.

Some ZD strategies have been known before. For example, if Alice uses an ‘equalizer’ strategy, she imposes a fixed payoff for Bob irrespective of Bob’s strategy.

This work suggests that extortion is feasible in almost any natural setup, even if the social dilemma involves more than two players or if players have access to more than two discrete actions.

Evolving populations, however, typically do not settle at extortion. But extortionate strategies can still act as catalysts for cooperation. As extortioners never lose any direct competition, they can subvert ALLD populations through neutral drift. Once they are common, they quickly give rise to more cooperative strategies. Evolution leads from extortion to generosity. Eventually, successful players provide incentives for mutual cooperation, but they are also willing to accept a lower payoff than their opponent when mutual cooperation fails.

Of partners and rivals

Maybe even more important than the discovery of ZD strategies is the new mathematical formalism that comes with them. This formalism can be applied more generally to derive relationships between the payoffs players can achieve in repeated games. Using these relationships, we find a remarkable dichotomy among the strategies for the iterated PD. Most of the previously discussed strategies fall into one of two classes: they act as rivals or as partners (Fig. 4). Partners aim to share the mutual cooperation payoff R with their co-player. Should the co-player not go along, however, they are ready to punish their co-player with lower payoffs. Rivals, in contrast, aim to have a higher payoff than their respective opponent, no matter what the opponent does.

Whether a given strategy qualifies as a partner or rival depends on the payoff values and the continuation probability. Among reactive and memory-1 strategies for the iterated PD, the sets of partner and rival strategies can be characterized explicitly (Box 2). For high continuation probabilities and a considerable benefit to cooperation, the set of partner strategies includes TFT, GTFT, WSLS and Grim. The set of rival strategies contains ALLD and the class of extortioners.

If the expected number of rounds is finite, subjects cannot be rival and partner at the same time. Partners need to be ‘nice’ to ensure they yield the mutual cooperation payoff R against like-minded opponents. They are never the first to defect. In contrast, rivals must be ‘cautious’ to guarantee they cannot be outperformed by any opponent. They are never the first to cooperate. A world of rivals is a world in which everyone defects.

Only in infinitely repeated games without discounting of the future does TFT offer a compromise between these two classes. In that case, the first round does not matter and TFT is both a partner and a rival: it does not lose out in any pairwise encounter, while still making sure that it yields the mutual cooperation payoff against players of the same kind.

While the two sets of partner and rival strategies comprise many of the well-known strategies, they do not contain all of them. For example, ALLC and TF2T neither qualify as partner nor rival. Instead, these strategies could be deemed submissive: players using ALLC or TF2T avoid ever getting a higher payoff than their opponent.

Partners and rivals in evolution

In general, partners and rivals only comprise a small fraction of strategies for the iterated PD. For example, among reactive strategies, partners always need to cooperate if the co-player cooperated in the previous round, while rivals need to defect after a co-player’s defection. Due to these constraints, the probability that a randomly chosen reactive strategy is either a partner or a rival is zero (Fig. 5a).

Nevertheless, evolutionary trajectories visit the vicinity of these two strategy sets disproportionally often (Fig. 5b–d). Partner strategies are favoured when cooperation yields a high benefit, when populations are sufficiently large and when errors are rare. However, the
Box 2 | Of partners and rivals

When Alice and Bob play a repeated PD with $T + S < 2R$, Alice applies a ‘partner strategy’ (called ‘good strategy’ by Akin[43,44]) if the following two conditions hold:

1. If Bob applies the same strategy as Alice, both get the mutual cooperation payoff, $x_A = x_B = R$.
2. By applying a different strategy, Bob can get at most R, in which case Alice gets the same payoff. That is, if $x_B \geq R$ then $x_A = x_B = R$.

In contrast, Alice applies a ‘rival strategy’ (or ‘competitive strategy’[45]) if she always gets at least the payoff of Bob, $x_A \geq x_B$. The two definitions make no restriction on Bob’s strategy: Bob may remember arbitrarily many rounds.

We can characterize all partners and rivals among reactive strategies (y, p, q). Without discounting, $\delta = 1$, a reactive strategy is a partner if and only if $p = 1$ and $q < q^*$ with $q^* = \min(1 - (T - R)/(R - S), (R - P)/(T - P))$. It is a rival if and only if $q = 0$. In both cases, the initial cooperation probability y can be chosen arbitrarily; the only exception are strategies with $p = 1$ and $q = 0$. Such strategies are always rivals, but TFT with $y = 1$ is the only such strategy that is also a partner.

A similar characterization is possible for discounted games and for memory-1 strategies[46]. In this case, Alice’s strategy $(p_0, p_1, p_2, p_3, p_4)$ is a partner if and only if:

$$
\begin{align*}
& p_0 = p_1 = 1, \\
& \delta(T - R)p_0 - \delta(R - P)(1 - p_1) + (1 - \delta)(T - R) < 0, \\
& \delta(T - R)p_3 - \delta(R - S)(1 - p_2) + (1 - \delta)(T - R) < 0
\end{align*}
$$

A partner strategy is never the first to defect. TFT is a partner strategy if $\delta > (T - R)/(T - P)$ and $\delta > (T - R)/(R - S)$. WSLS is a partner strategy if $\delta > (T - R)/(R - P)$ and $\delta > (T - R)/(T - S)$, which is a sharper condition. Alice uses a rival strategy if:

$$
\begin{align*}
& p_0 \text{ arbitrary}, \\
& p_0 = p_1 = 0, \\
& \delta(p_3 + p_4) \leq 1
\end{align*}
$$

ALLD is always a rival strategy. Extortion is a rival strategy if $2P < T + S$.

reason why partner strategies are favoured is different between these cases. High benefits of cooperation are amenable to the evolution of partners because they increase both the set of partner strategies and its basin of attraction[47,48], from which evolution leads towards partner strategies. In contrast, small population sizes leave the set of partner strategies unaffected, but small populations select for spite[49]. When a population contains only a few individuals, successful strategies do not need to yield a high payoff. They only need to guarantee that their own payoff is higher than the payoff of all others. In such cases, rivalry pays.

While the results in Fig. 5 focus on evolution among reactive strategies in games without discounting, the same conclusions hold for memory-1 strategies with discounting, as shown in Supplementary Fig. 2. There we additionally show that rivalry is favoured when the game is only played for a few rounds, such that partner strategies cease to exist.

These simulation results can be understood using the concept of evolutionary robustness[50–52]. If a resident population of size N applies a strategy that is evolutionary robust, no mutant strategy can reach fixation with probability higher than the neutral probability $1/N$. In the limit of large populations and no discounting, Stewart and Plotkin have shown that all partner strategies are evolutionary robust, and so is a subset of the rival strategies (called robust self-defectors[53]). The only other robust set of strategies is the set of robust self-alternators, according to which Alice and Bob alternate between cooperation and defection (such that $p_1 = 0$ and $p_3 = 1$). Which behaviour will be favoured over an evolutionary timescale is surprisingly well predicted by the dynamics among these three strategy sets[56].

Direct reciprocity in the laboratory

Instead of exploring the performance of partners and rivals in virtual populations, one may ask which behaviours human subjects would adopt, using the controlled setting of laboratory experiments. While it is notoriously difficult to infer from the subjects’ revealed actions which strategies they apply, experiments provide some evidence for the above evolutionary results. For example, the recent finding that subjects become less cooperative when they focus on the payoffs of their co-players[60] can be interpreted as an illustration of the negative effects of rivalry. Experimental results also seem to be in line with the qualitative trends of Fig. 5 and Supplementary Fig. 2: subjects become more cooperative if they can expect to interact in more rounds[64], or when the benefit-to-cost ratio of cooperation is high, or when errors are rare[67].

Two experiments have aimed to quantify the success of ZD strategies more directly, by matching human participants either with an extortionate or a generous ZD strategy[71,72]. The ZD strategy was implemented by a computer programme, but subjects did not obtain any information about the nature of their opponent. While the extortionate programme indeed outperformed each human opponent in the direct encounter, it was the generous programme that reached on average higher payoffs than the extortioner. For this result, fairness considerations are essential: when being matched with an extortioner, there is a trade-off between gaining high payoffs, which would require the human participants to cooperate, and gaining equal payoffs, which would require them to defect in every round. This trade-off is absent in the generosity treatment: against generous opponents, full cooperation guarantees both, high and equal payoffs. In line with this argument, the concern for fairness vanished when participants were explicitly informed that they are interacting with an abstract computer programme, in which case participants were equally cooperative across all treatments[67].

However, extortion may still succeed under appropriate circumstances. A stylized behavioural experiment on climate change negotiations suggests that even if subjects themselves are not extortionate, they may vote for representatives who are[73]. In this way, subjects may reap the benefits of extortion without a need to feel guilty.

Power asymmetries also seem to trigger extortionate behaviour: in another experiment, a randomly determined subject was given the option to replace one of her co-players by a currently inactive player every ten rounds of a repeated PD. The replaced player would then become the inactive player, without any opportunity to earn payoffs during that period. Under these rules, subjects with the replacement option learned to take advantage of their superior position. They subtly enforced their opponents’ cooperation while being substantially less cooperative themselves[74]. It seems that with great power comes rivalry, instead of responsibility.

Beyond the iterated PD

While the iterated PD has been the most common model to study direct reciprocity, the repeated games of our daily lives can have slightly different manifestations. Alice and Bob may face different one-shot payoffs[69], they may have to make their decisions asynchronously[53,52] or they may have access to richer strategy sets, instead of just having the binary choice between cooperation and
defection96-98. In other applications, the social dilemma may not only involve Alice and Bob but also Caroline, Dave and others99,100. How do the above results extend to these cases?

None of the results depend on the specific payoff ordering $T > R > P > S$ of the PD. Instead, they readily extend to arbitrary social dilemmas that only satisfy $R > P$, which means mutual cooperation is preferred over mutual defection, and $T > S$, implying that players prefer to be the defector in mixed groups. In that case, the existence of ZD strategies is guaranteed11, and also the characterization of rival strategies (Box 2, equation (8)) carries over12. In particular, these concepts immediately apply to other well-known social dilemmas, such as the snowdrift game (with $T > R > S > P$) and the stag-hunt game (with $R > T > P > S$). Only the characterization of partner strategies (Box 2, equation (7)) requires $T + S < 2R$. Without this condition, alternating cooperation and defection would be the social optimum necessitating a different definition of partner. A numerical analysis for evolutionary games among pure memory-1 strategies supports this view13: in social dilemmas, rival and partner strategies are predominant if mutual cooperation is optimal, whereas alternating strategies succeed when $T + S > 2R$.

Similarly, the results also extend to social dilemmas with two actions but multiple players. For example, most of the strategies in Fig. 2 have direct analogues in the multiplayer case, including TFT14, WSLS97,98 and extortioners11. Also, the definitions of partner and rival strategies can be extended appropriately. However, in arbitrary multiplayer games, the partners among the memory-1 players have only been characterized among deterministic and ZD strategies15. For a public goods game among memory-k players, Stewart and Plotkin have shown that a strategy only needs to resist four ‘extremal’ mutant strategies to qualify as a partner16. Their analysis also revealed that the relative size of the set of partner strategies increases with the player’s memory, but decreases with group size. In line with these analytical results, their simulations confirm that small groups and long memories promote cooperation, and that players learn to expand their memory capacity when given the option17. An analogous characterization of rival strategies in multiplayer games is still pending, although such an extension seems feasible using the methods sketched herein (see Box 2).

Finally, there has also been substantial progress on social dilemmas with two players but multiple actions. ZD strategies can be characterized for continuous action sets18. Moreover, it has been shown that full cooperation can often be stabilized with partner strategies that only make use of two of the n possible actions19. At the same time, however, simulations suggest that evolution does not need to converge to the most efficient outcome. Instead, players may be trapped in local optima of the fitness landscape, in which players only partly invest into the public good20. These simulations suggest that players sometimes confine themselves to be partial partners: in equilibrium, they contribute a considerable amount of their endowment to the public good, but they may not contribute everything.

Fig. 4 | Partners and rivals. In each panel, the grey diamond depicts the space of possible payoffs for the two players. The coloured areas or lines in the periphery show the feasible payoffs when Alice uses ALLD, extortion, TFT, GTFT, WSLS, Grim, TF2T or ALLC. The coloured dot denotes the payoff when Bob uses the same strategy as Alice. Most of these strategies either qualify as rival (red) or partner (blue). With a rival strategy, Alice can outperform her opponent; irrespective of Bob’s strategy, she always obtains at least the payoff of Bob. With a partner strategy, Alice aims to reach the mutual cooperation payoff without tolerating exploitation. In that case, Bob may be able to get a larger payoff than Alice, but he cannot get a larger payoff than R. The payoff relations correspond to the infinitely repeated game without discounting. In that case, TFT is both a rival and a partner. Payoffs are $R = b - c$, $S = -c$, $T = b$ and $P = 0$ with $c = 1$ and $b = 3$.© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
To obtain a general understanding when full partnerships evolve, a complete characterization of all partner and rival strategies for games with multiple actions would be desirable.

Conclusion

Direct reciprocity is a mechanism for the evolution of cooperation. It is based on repeated interactions between the same individuals. The new mathematical formalism of ZD strategies has led to a characterization of evolutionarily successful strategies into partners and rivals. Partners aim for mutual cooperation, but are ready to defend themselves when being exploited. Rivals focus on their own relative advantage and on winning. Only partner strategies stabilize cooperation. The rivals’ aim to put themselves first, which is a widespread motivation of current populist politics, ensures a path towards destruction.

Methods

For the simulation results shown in Fig. 5 and Supplementary Fig. 2, we have used the method proposed by Imhof and Nowak. We consider a population of size N, which initially consists of ALLD players only. At each time step, one individual is chosen to experiment with a new strategy. This mutant strategy is generated by randomly drawing the cooperation probabilities from the interval [0,1]. If the mutant strategy yields a payoff of \(p_i(j) \), where \(j \) is the number of mutants in the population, and if residents get a payoff of \(s_i(j) \), then the fixation probability \(\rho \) of the mutant strategy is:

\[
\rho = \left[1 + \sum_{j=1}^{N} \prod_{i=1}^{j} \exp\left(-s_i(j) + s_i(0)\right) \right]^{-1}
\]

The parameter \(s \geq 0 \) measures the strength of selection. If \(s = 0 \), payoffs are irrelevant and the fixation probability simplifies to \(\rho = 1/N \). For larger values of \(s \), the evolutionary process increasingly favours the fixation of strategies that yield high payoffs. Once the mutant strategy has either reached fixation, or gone to extinction, another mutant strategy is introduced.

We have iterated this process for 10^5 mutant strategies per simulation run. The process approximates the evolutionary dynamics of finite populations when mutations are sufficiently rare. It generates a sequence \((p_0, p_1, \ldots) \), where \(p_i \) is the strategy the residents apply at time \(i \). Using this sequence, we can compute how often players cooperate on average, and how often they apply an approximate partner or rival strategy. We compare the abundance of these strategies with their abundance under neutral evolution, \(s = 0 \), in which case the abundance coincides with the volume of these strategy sets.

References

11. Extensive compendium on repeated games from an economics point of view, which gives an excellent overview on the folk theorem literature.
On the conclusions drawn from Axelrod's tournaments.

Acknowledgements

This work was supported by the European Research Council Start Grant 279307: Graph Games (to K.C.), Austrian Science Fund (FWF) Grant P23499-N23 (to K.C.), FWF NFN Grant S11407-N23 Rigorous Systems Engineering/Systematic Methods in Systems Engineering (to K.C.), Office of Naval Research Grant N00014-16-1-2914 (to M.A.N.) and the John Templeton Foundation (M.A.N.). C.H. acknowledges generous support from the ISTFELLOW programme.

Author contributions

All authors conceived the study, performed the analysis and wrote the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41562-018-0320-9.

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to C.H.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.