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Abstract

Rule-based models are widely adopted among system biologists since such
models enable terse descriptions of molecular pathways. The combinatorial
complexity inherent to molecular systems, stemming from the numerous
interactions and formation of molecule complexes, is handeled using general
rules to describe all possible reactions. This increases the expressive power
available to model builders, yet leaves the total complexity of a model
unchanged: The application of the rules on a specific set of start molecules
currently requires full calculation of all distinct tranformations and graphs
reachable in this system, regardless of what part of the system is of interest.

In this thesis, a slicing technique for graph transformation systems is
developed and application in biological context is discussed. Graph-based
models of chemical and biochemical reaction networks are given. It is
demonstrated that a slice of a chemical graph grammar reproduces the
behavior of the original grammar with regard to a subgraph. Biological
applications and possible extensions of this approach are discussed.
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1
Introduction

The knowledge and understanding of biochemical pathways and the in-
teractions within is a cruicial prerequisite for further advancement of the
life sciences. The qualitative knowledge of biochemical pathways has been
increasing rapidly within the last decades. However, this is in crass con-
trast to the still restricted use of mathematical and computational tools to
understand living systems.

In this thesis a method is developed to modularize graph-based models
of chemical reaction and protein–protein interaction networks. The graph
grammar slicing approach used for this allows to reduce the size of a reaction
network generated from a model, with consequences for model building and
numerical simulations in systems biology and artificial chemistry.

1.1 Background

During the recent years, we have witnessed a vast growth of biological infor-
mation publicly available in databases and currated collections. This gain
of information is not limited to genomic sequences and protein structures,
but also leads to increasingly high detail databases on metabolic pathways
[13, 41, 43]. However, the raw data in such databases must be interpreted
and put into context to gain new insights into the inner workings of biologi-
cal systems like cells, organs or whole organisms.

The research field which aims at a holistic understanding of these en-
tities is generally referred to as systems biology [62]. This includes the
development of mathematical methods to analyse complex systems and
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1 Introduction

computational representations and algorithms to process the available data
necessary for simulations and valueable predictions.

In this section, a brief overview is given describing the components which
make up the systems under consideration in this thesis.

1.1.1 Chemical and Biochemical Reactions

A chemical reaction in general is the process in which the electron con-
figurations of one or more molecules are changed to yield new molecules.
Chemical reactions may be coupled for the synthesis of newly designed
substances bearing desired properties.

Chemical reactions in biological systems rarely involve only small molecules
but depend on enzymes or other large proteins. These biochemical reactions
are thereby highly specific: The tertiary structure of proteins restrict the
number of potential reaction partners, especially in enzymes.

Biochemical reactions are highly interconnected, forming a network within
the cell. The network can be thought of as a graph consisting of molecular
species and reactions transfering between species. Enzyme kinetics, regulat-
ing the rate at which species react, are often given using Michaelis-Menten
kinetics, but can also be specified using basic kinetics of elementary chemical
reactions, that is mass-action kinetics.

1.1.2 Cellular Signal Transduction Pathways

Information from the outside of the cells is processed in signal transduction
pathways: A signal from outside the cell is picked up on the membrane by
a receptor and is passed on to inner parts of the cell by small molecules
and interacting proteins. The main processing of the signal is performed by
protein–protein interaction networks. These intracellular networks result
in the modification and activation of proteins and the formation of protein
complexes. The end-points of the cascade are transcription factors, affecting
the rate of sequence transcription and therefore the kind and concentration
of proteins in the cell.

The activity and interaction capability of a protein is determined by its
inner state, which is set by small modifications to key-parts of the protein.
The most common modifications are phosphorylation of a serine, threonine
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1.2 Aims and Contributions

or tyrosine residues altering the proteins tertiary structure and therby in-
creasing its enzymatic activity. The MAP kinase pathway is a well known
example of cellular signal transduction pathways, featuring many examples
for protein activation by means of amino acid phosphorylation.

1.1.3 Combinatorial Explosions

The number of protein complexes occurring in a cell is tremendous and even
within a fairly restricted signal transduction pathway, it may be unmanage-
able for computational simulations [17, 22]. There is a multitude of protein
types involved in the pathways and the internal states of a protein as well as
the multitude of possible interactions increase the number of differentiable
complexes. Consequently, even moderately sized models of such pathways
quickly result in simulations requiring considerable computational power to
execute.

For example, linear formation of protein complexes results in quadratic
number of possible complexes, and the number of protein configurations
grows exponentially with the number of modification sites.

However, it often is possible to take a macroscopic view of a system,
such that on a molecular level distinguishable complexes are identified on
the macroscopic level. In this thesis, a new such method is described for
graph-based models of proteins.

1.2 Aims and Contributions

The aim of this thesis is to further the understanding of modularity and
model reduction in graph-based models in the special case of graph gram-
mars.

Formal and graph-based models are given for low-molecular chemical
components as well as for proteins. The chemical model includes infor-
mation on the level of atoms and electrons, while the model for protein
complexes is based on protein domains and their interactions. Both mod-
els are developed and described in Chapter 2. While such models have
been designed before, this thesis emphasises the similarity of the models on
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1 Introduction

a mathematical level, thereby demonstrating that methods developed for
artificial chemistry may also be applied in systems biology and vice versa.

Graph grammar slicing is introduced as an approach to generate rewrite
systems which contain the same as the original system on a more abstract
level while ignoring unnecessary detail. The relationship of the constructs
introduced here to similar constructs described by other authors is discussed.

1.3 Thesis Outline

We start in Chapter 2 with a brief overview of the required basic mathe-
matical tools and continue with the description of graph-based models for
small molecules and their reactions. This is followed by a model for protein–
protein interaction networks. Mathematical tools used in the models will be
described as we go along.

In Chapter 3, graph grammar slicing is developed as mathematically sound
approach to modify a rewrite system such that its behavior is unchanged
with respect to specific parts of its components.

The thesis ends with conclusions and an outlook to further work.
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2
Graph-Based Models of Reaction Systems

Graphs are not only an expressive and flexible way of describing real
world entities, but also mathematical objects. Models using graphs are found
throughout most scientific fields, and the number of tools and methods avail-
able to build and analyze these models is vast. These favorable properties
stay valid in recent application areas of graph theory, such as biochemistry,
metabolomics and artificial chemistry. Here we will focus on simple graph-
based models in these areas. Graph rewriting is introduced as a formal yet
intuitive way to model dynamical changes.

First we will discuss how graphs are used in artificial chemistry, and how
molecules and reactions can be modeled by graphs and graph rewrite rules,
respectively. General advantages and problems of graph rewriting will be
discussed here.

A shift in the abstraction level leads from simple organic molecules to
more complex structures: Graph-based models of proteins and protein
complexes enable rule-based descriptions of biochemical processes. We
focus on graph rewriting in the context of protein–protein interactions and
discuss how theoretical constructs such as graph-typed graphs can help to
validate the results of graph rewriting steps.

In the last section we discuss other common methods used to model
biochemical processes, most notably Petri nets and process calculi.
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2 Graph-Based Models of Reaction Systems

2.1 Graphs and Graph Morphisms

A graph is a tuple G = (VG,EG, sG, tG), where VG is a set of vertices, EG is a set
of edges and sG, tG : E→ V are the source and target functions.

2.1.1 Graph Morphisms

A graph morphism is a mapping between two multigraphs, respecting the
structure of the graphs. Graph morphisms preserve connectivity in that two
vertices, which are connected in the domain of the morphism, must also be
connected in the the same way in the morphism’s image.

Given multigraphs G and H , a graph morphism f : G → H is a pair of
functions f = (fV : VG→ VH , fE : EG→ EH ) such that sources and targets are
preserved, that is, fV ◦ sG = sH ◦ fE and fV ◦ tG = tH ◦ fE .

In this work, the main focus will be on injective and bijective mapping
functions, graph monomorphisms and graph isomorphisms, respectively. These
types of morphisms conveniently capture the idea of “partially similar” and
“equivalent” graphs.

We say a graph G is a subgraph isomorphic to H , and write G �H , if there
is a monomorphism f : G→H from G to H . The graphs G and H are called
isomorphic, written G ≡H , if the monomorphism f can be inverted such that
f −1 ◦ f = idG.

2.1.2 Typed Graphs

Typed graphs are an extension to the usual labeled graphs. Vertices and
edges of a labeled graphs are colored with elements of a color set, while in
typed graphs they are mapped to a graph of types. Graph morphisms are
easily extended to typed graphs.

A graph T consisting of vertex types VT and edge types ET is called a
graph of types. A typed graph is a tuple G = (G̃,τG̃), where G̃ is a graph, T is a
graph of types and τG̃ : G̃→ T is a graph morphism.

Let G = (G̃,τG̃) and H = (H̃,τH̃ ) be typed graphs. A T -typed graph mor-
phisms f : G→H is given by a graph morphism f̃ : G̃→ H̃ consistent with
typing, that is, such that τG̃ = τH̃ ◦ f̃ .
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2.2 Graph-Based Artificial Chemistry

Example 2.1 The graph

a b

c

d
e

T =

is a type graph having just one edge type for each pair of vertices. In this
thesis, graphs typed over T , for example

a b

c

d
e

will not be drawn in full detail. Instead, nodes are replaced by their respec-
tive vertex type, such that the above typed graph will be depicted

d

c

e

The models in this chapter are based on typed graphs, so we will re-
fer to graphs as explicitly as untyped graphs and use the term typed graph
synonymiously to graph if no confusion about the meaning of the term is
possible.

2.2 Graph-Based Artificial Chemistry

Artificial chemistry is generally understood as a theoretical or computational
system that is similar to a real chemical system. A common formal definition
of artificial chemistry is based on a set of molecules S, a set of molecular
interaction rules R and an algorithm A specifying the conditions of how and
when the interactions occur [28]. A multitude of artificial chemistry systems
has been developed, offering different representations of molecules and re-
actions. In the context of biochemical reactions involving protein–protein
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2 Graph-Based Models of Reaction Systems

interactions, graph-based representation of molecules are of particular in-
terest since they are expressive, straightforward to develop and easy to
understand for mathematicians and biologists alike [21, 48].

2.2.1 Modeling Molecules as Graphs

Structural formulæ are the most common method of describing molecules,
especially in organic chemistry. Labeled graphs are closely related to struc-
tural formulæ and therefore are a natural choice for the representation of
molecules.

The following formalization is based on a Toy Model of chemistry, intro-
duced by Benkö et al. [5] in 2003 as a framework to explore properties of
large chemical networks. This approach features the potential to perform
energetic calculations as well as an artificial chemistry model based on graph
rewrite rules. The latter aspect is elaborated on in the next section.

Formally, a graph-based model of molecules uses vertices to represent
atoms, while covalent bonds become edges connecting two vertices. All
vertices and edges in the graph are typed over a type graph specifying the
types of atom orbitals and bonds, respectively.

It should be noted there is no restriction on the number of edges between
two vertices, allowing two or more parallel edges. Hence, we need additional
restrictions to ensure that each graphs corresponds to a structure potentially
produced by a chemical system. For example, each vertex that is typed as a
sp3 hybridized carbon atom should have exactly four bonds connecting it to
its neighbors.

The exact conditions that mark a graph as a representation of a molecule
molecular graph will depend on the details of the model. The following
definition for molecule representing graphs is intentionally left unspecific
for that reason.

Definition 2.1 (Molecular Graph) Given a set of properties, let T be a type
graph of atoms and orbitals and GT be a class of graphs typed over T . The
set of graphsM in GT for that all properties are true is the set of molecular
graphs.

The three-dimensional configuration and similar information is not in-
cluded in this graph-based model. Instead, the molecular structure is re-

8



2.2 Graph-Based Artificial Chemistry

duced to atoms and connectivity. However, this loss of information often
does not seriously influence the predictional reliability of qualitative models
involving small molecules [4].

2.2.2 Modeling Reaction Rules as Graph Productions

The focus of models for artificial chemistry is the simulation and analysis
of chemical reaction systems. In the graph-based model, chemical reaction
rules are modeled as graph productions acting on molecular graphs [4, 5].

Chemical reactions given by structural formulæ frequently specify only
the relevant parts of the reacting molecules. This is reflected in the graph-
based abstraction in that rules may contain partial molecular graphs. Partial
molecular graphs do not directly correspond to molecules found in the
reaction system, but represent a substructure of molecules.

Substructures correspond to subgraphs in graph-based models. They are
used as means to define premises and changes of a reaction. Current ap-
proaches use the double pushout approach to graph rewriting, see Corradini
et al. [19] for details on the basic concepts.

A production is a pair (p : L
l← I

r→R), where p is the productions name and

the span L
l← I

r→R consists of a pair of injective graph morphisms l : I → L
and r : I → R. The graphs L, I and R are called the left hand side, right
hand side and interface of the production, respectively. If both morphisms
l and r are monic, then p is linear. Often we will reference to a production

(p : L
l← I

r→R) simply by its name p if there is no possible confusion of its
meaning.

In chemical terms, the left hand side of a production corresponds to those
parts of a molecule that are necessarily present in an educt for the reaction
to take place. The name of a production will typically be linked to a reaction
rate, but it may also carry additional information.

Distinct components of a molecule stay distinct throughout a reaction.
This is ensured by restricting the class of morphisms in a production to
monomorphisms, so productions modeling chemical reaction rules must be
linear. Furthermore, chemical reactions are reversible:

A production π = (p : L
l← I

r→ R) is reversible if there exists an inverse

name p−1. The production (p : L
l← I

r→R)−1 = (p−1 : r
l← I

r→ l) in which the

9



2 Graph-Based Models of Reaction Systems

left- and right morphisms are exchanged is the inverse of π and we say that
π is invertible.

Definition 2.2 (Chemical production) A production is chemical if its linear
and reversible.

Example 2.2 Below is a rewrite rule specifying an esterification reaction.

C

O

H

O

+ H

O

C C

O

O

C + H

O

H

2.2.3 Modeling Chemical Reaction Systems
as Graph Grammars

Graph productions by themselves are insufficient to describe a dynamical
system like reaction networks in a cell or a chemical reactor. A system model
is typically comprised of a start configuration and the productions acting on
the graph. This determines the potential behavior of a graph transformation
system and leads to graph grammars as a mathematical model. Graph
grammars are the prevalent construct used in graph transformation research
and are also suitable for chemical system models.

Definition 2.3 (Graph grammar) A typed graph grammar is a tuple G =
(T ,G0, P ,Π) consisting of a type graph T , a start graph G0, an index set
of production names P and a set of productions Π = (p : Lp← Ip→Rp)p∈P
indexed over P .

Application of a production on a graph is handeled using direct deriva-
tions, formulated here in a category theoretical way. A production may only
be applied on a graph when the result is uniquely determined. For more
details on the construction of pushouts and pushout complements in the
category of graphs, see for example Corradini et al. [19].

10



2.2 Graph-Based Artificial Chemistry

Given a production π = (p : L
l← I

r→R), the dangling condition is satisfied
for a match m : L→ G if the pushout complement of the composable arrows
I

L→B
m→G exists.

Let G be a graph, π = (p : L
l← I

r→ R) a production and m : L → G a
morphisms (also called a match). A direct derivation from G to H using p based

on m, written G
p,mL
===⇒H , is the given by a diagram

L I R
l r

G C Hg h

mL mI mR (2.1)

such that all squares are pushouts.
A chemical reaction is modeled by the application span of a direct deriva-

tion using a chemical production. The graphs G, H and I in the application
span of diagram (2.1) correspond to the educts, products and the unchanged
context of a chemical reaction, respepectively.

Coupled reactions and pathways are given by sequential derivations. The
products of one reaction are regarded as the educts of the next reaction,
linking arbitrary numbers of reactions as long as they can be applied in
sequence.

A sequential derivations (over G) is either a sequence of direct derivations

% = {Gi−1
πi ,mi
====⇒ Gi}i∈{1,...,n} with πi ∈ Π or the identity derivation given by

a graph G. In cases where we are not interested in the intermediate steps
of the sequential derivation, we will write % : Gi ⇒∗G Gn. The language of a
graph grammar G, denoted L(G), is the set of possible ending graphs of a
sequential derivations from the start graph,

L(G) = {Gn : G0⇒∗G Gn}

Often, the details of a derivation are of no concern to us. We then ignore
the production span and its matches, focusing on the resulting span of the
derivation which contains the pushout objects.

If ρ is a sequential derivation as above, the sequence app(%) = Gi
gi+1← Ci+1

hi+1→

11



2 Graph-Based Models of Reaction Systems

Gi+1← . . .
gn← Cn

hn→ Gn is called the application sequence of ρ (or application
span if the sequence is of length 1).

Graph grammars allow us to describe a dynamical system and give us a
model for the reactions which are possible within the given setup. We use
this scheme as the base for our discussions in the remainder of this thesis.
For variations and alternative formal descriptions of graph-based models of
artificial chemistry see for instance Rosselló and Valiente [57] and Kerber
et al. [42].

2.3 Graph-Based Abstractions for
Protein–Protein Interactions

Proteins are large and complex molecules, consisting of peptide chains
with up to several hundreds or thousands of amino acids monomers in
length. This complexity is furthered by additional secondary and tertiary
structure, which is essential to the proteins function within a cell. This
renders understanding and modeling proteins difficult.

Molecular graphs are best suited for the analysis of small proteins and
their respective interactions. Their level of detail on the atomic level renders
molecular graphs close to useless in the analysis of cellular signaling net-
works. Different, suitable reductions must be used in the modeling process
in order to enable analyses on higher levels.

The base for protein-level models is based on the observation that unlike
general reactions, protein–protein interactions depend only on few and very
specific parts of the protein. The process of a protein domain being bound
or the occurrence of a phosphorylation- or glycosylation event is sufficient
to state conclusions about the biochemical properties of the protein.

Like for molecular graphs defined in the previous section, our model
for proteins is based on typed graphs. We define the type graphs suitable
for protein modeling and then explicitly specify what constraints must be
satisfied in such model.

12



2.3 Graph-Based Abstractions for Protein–Protein Interactions

2.3.1 Type Graphs for Protein Modeling: Domain Interaction
Maps

Most interactions between proteins are very specific: Not only the types of
proteins capable of interactions is limited, but interactions are also associated
with certain domains withing the proteins. These interaction properties are
captured by a domain interaction map. (Some authors use the term contact
map instead, but we avoid this term due to its bioinformatical meaning
which is unrelated to the construct we are using here.)

All node types and possible interactions occur exactly once in a domain
interaction map. This property is exploited by our model for protein com-
plexes, in which protein complexes are modeled as graphs typed over a
domain interaction map. Additionally to proteins, sites and their inter-
actions, we include internal states of sites to allow for easy modeling of
configuration changes and amino acid phosphorylation.

Definition 2.4 (Domain interaction map) Let P , S and A be disjoint sets
whose elements are called protein types, site types and internal states, respec-
tively. A graph D = (VD ,ED , sD , tD) is called a domain interaction map if its
vertices are the union of P , S and A.

Example 2.3 The epidermal growth factor (EGF) receptor (EGFR) signaling
is involved in the regulation of numerous cellular processes and plays a
crucial role in the development of many cancer types [51]. It is among
the best-investigated signaling systems. A model of the early events of
EGFR signaling [7] has been established as a semi-conventional example for
rule-based models of protein–protein interactions.

EGFR is a trans-membrane receptor which, upon binding of its ligand EGF,
dimerises and is consequently autophosphylated. The phosphorylated EGFR
tyrosin residues interact with other intracellular proteins and thereby signal
the EGF binding event to other parts of the cascade. This motivates to use
the following interaction sites to describe EGFR molecules: A ligand-binding
site l, a receptor-dimerisation site d and two tyrosine sites named after the
respective amino acid positions, Y 48 and Y 68. Interaction sites of the other
proteins are represented using similar considerations.

See Figure 2.1 for a domain interaction map of the early events in the
EGFR signaling model by Blinov et al. [7].

13



2 Graph-Based Models of Reaction Systems

EGF
r

EGFR

L

Dy68

y48

GRB2 ab

SHC

y7

p

SOS c

Figure 2.1: A domain interaction map for the early EGFR signaling model
[7].
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2.3 Graph-Based Abstractions for Protein–Protein Interactions

2.3.2 Modeling Protein Complexes as Graphs

The focus on modification sites, domains, and internal states of proteins
greatly reduces the size of graphs used in the models compared to molecular
graphs used in artificial chemistry. The model presented here is in concert
with most of the approaches used in the literature (see for instance [8, 21, 36]).
Included is information on protein–protein binding sites and on amino acids
which are subject to modifications like phosphorylation or glycosylation.
However, the details of the graph-based protein models vary; to the best
of the authors knowledge, the use of constrained, typed graphs to model
protein complexes has not been described yet.

We now define protein complexes as interacting protein graphs. Simple
graph typing over a domain interaction map is very permissive, motivating
additional constraints on protein-complex graphs.

Definition 2.5 (Protein complex graph) Given a domain interaction map
D, a protein complex graph P is a D-typed graph such that the following
conditions are met:

PC1 Protein interaction is limited to sites: The neighborhoods of two
protein nodes p1,p2 in P are disjoint, i.e. N (p1)∩N (p2) = ∅

PC2 Binary site interactions: Each site node in P is connected to at
most one further site node.

PC3 Connectedness: P is connected.

The definition ensures that protein-complex graphs are build in a sound
way using protein types, site types and internal states. There are no edges
connecting two protein nodes, protein interaction is only possible through
interaction sites.

2.3.3 Modeling Protein–Protein Interactions as Graph Rewrite
Rules

Graph-based modeling of protein–protein interactions is highly related to
artificial chemistry and shares the idea of using graph rewriting to repre-
sent (bio)chemical reactions: Protein complexes are represented by protein-
complex graphs, and modifications to these graphs are specified by graph

15



2 Graph-Based Models of Reaction Systems

EGF
r

EGFR

L

EGF
r

EGFR

L

EGF
r

EGFR

L

Figure 2.2: Example of a protein-interaction rule: EGF receptor binding.

transformation rules. While most authors in the field use single pushout
rewriting [8, 21, 33], we content ourselves with the slightly more restrictive
case of double pushout rewriting [19]: We find the additional generality of
the single pushout approach unnecessary, and the double-pushout approach
both sufficient in power and ease of understanding. Additionally, single
pushout rewriting allows deletion processes that are unnatural in the context
of molecular biology.

Definition 2.6 (Protein interaction rule) A protein interaction rule is a graph

rewrite rule L
l← I

r→R such that L and R are protein complex graphs.

Example 2.4 Figure 2.2 depicts a rule that expresses the binding of an EGF
ligand to the extracellular part of the receptor. The binding process is
assumed to be independent of the binding states of the intracellular sites.
Therefore, the site nodes of the internal domain can be omitted in the rewrite
rule description of the binding process.

2.4 Integration of Quantitative Parameters

A main goal of biological systems modeling is the gain of new insights
on the internal dynamics of the system. The dynamics are determined
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by concentrations, reaction rates and other numerical parameters which
have not been considered yet. In order to enable quantitative analysis and
simulation of the systems, these values must be an integral part of the
models.

Augmenting rule-based models with numerical parameters is straight-
forward, and was already mentioned in the definition of productions for
chemical systems (see Section 2.2.2 on page 9). Each rewrite rule in the
model, or production in our graph grammar terminology, has a parameter
assigned determining how often or how fast the rule is executed within the
system. The type of the parameter, reaction constant, rate or probability,
may differ depending on the intended type of simulation.

Simulation of systems becomes increasingly important the more complex
the examined system is; simulations are often possible even when the analyt-
ical methods fail. We describe two common techniques of reactive systems
simulation.

2.4.1 Simulations Using Ordinary Differential Equations

A common and simple simulation technique is based on mass action kinetics
and elementary reactions. An elemental reaction occurs in a single step and
without intermediate products [58]. The rate of an elementary reaction is
determined by mass action kinetics, that is the rate is the product of educt
concentrations and a single reaction constant. For a unimolecular reaction
A→ products, the rate is given by

d[A]
dt

= −k[A]

and for a bimolecular reaction A+B→ products, the rate is

d[A]
dt

=
d[B]
dt

= −k[A][B]

where k is the reaction constant [A] and [B] are the concentrations of molecules
A and B, respectively (for details, see for example [49]).

Assuming all rewrite rules in a model represent elemental reactions and
have reaction constants assigned, it is possible to generate a system of or-
denary differential equations for numerical simulations. The algorithms for
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this was first described by Blinov et al. [8] in 2006. Given a set of molecules
which make up the start solution, all possible direct derivations are deter-
mined and the corresponding differential equation is generated for each
direct derivation using mass action kinetics. The resulting sytems can then
be analysed computationaly using standard tools of numerical integration.

This method is used by many rule-based biochemical modeling tools,
including BioNetGen [6], little b [47] and Bio-PEPA [14]. The algorithm
may be computationally expensive due to the need for repeated solution
of the subgraph isomorphism problem [8] and the possibly large number
of reactions [22] (see also Section 2.6). However, complexity can be tamed
using reduction techniques as described in Section 2.6.2. Once a reasonably
compact ODE systems has been generated, it allows rapid exploration of
systems dynamics.

2.4.2 Simulations Using Stochastic Approaches

Stochastic simulations are an alternative to the deterministic simulations
lined out in the previous section. The Gillespie algorithm [39] is a classic
stochastic method to generate trajectories of molecule concentrations within
a reaction system. Like for ODE-based simulations described above, reac-
tions must be elementary in order for the original algorithm to produce
correct results. However, extension of the algorithm have been developed
such that the restriction to mass action kinetics is lifted and more complex
kinetics, like the biochemical important Michael-Menten kinetics, may be
used [11, 54].

Another interesting approach are continuous time Markov chains, model-
ing concentrations as discrete quantities. This allows for probabilistic model
checking and numerical simulations which converge to the ODE case for
increasing numbers of states [10].

For both simulation types there exist modeling tools with support for the
respective method, for example BioNetGen [6] for the Gillespie algorithm or
Bio-PEPA, which supports all types of simulations mentioned above.
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2.5 Related Modeling Approaches

2.5 Related Modeling Approaches

Biological systems are very complex and difficult to analyze. There is no
single modeling framework suitable for each one of the vast numbers of
current research questions. It is therefore not surprising that a multitude of
models have been developed to address biological problems through model
building. Appart from graph-based models, other approaches to biological
system modeling include Petri nets, process calculi and multiset rewriting.

Petri nets and multiset rewriting are strict subsets of graph transformation
systems.

2.5.1 Petri Nets

Petri nets are a well understood and widely used modeling tools for dis-
tributed systems. There exist a broad range of programs and utilities to
build and analyze Petri Nets. Consequently, Petri nets are a natural choice
for the description of biological systems [40, 55].

Some of the restrictions of plain Petri nets are lifted by various extensions
which add additional properties to the models. Examples include continuous,
colored and hybrid Petri nets [27]. Such generalized Petri nets are frequently
found to be useful for application in biology as well. For example, continuous
time Petri nets [26] can be used as a means to add reaction rates to transitions
[38].

It is worth noting that Petri nets may be encoded using typed graph
grammars [18].

2.5.2 Multiset Rewriting

The concept of multiset rewriting is similar to graph rewriting, but objects
in a multiset are not structured by edges. Like Petri nets, which are a special
case of multiset rewriting, the method is highly used in computer sciences,
especially for analysis of security protocols. Nonetheless, multiset rewriting
has also become an established method to investigate properties of cellular
systems.

Multiset rewriting enables formal analyses of reaction systems, including
reachability analysis and model checking [35]. A software solution for cellu-
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lar systems modeling based on multiset rewriting is, for example, Pathway
Logic [35, 59].

2.5.3 Process Calculi

Another approach to modeling transfered from adapted from computer
science into biology is given by process calculi which were designed as
formal models for concurrent systems.

A multitude of process calculi have been used or newly defined for bio-
logical systems, including the π calculus [56], the κ calculus [21] the ρpg
calculus [2, 3], brane calculi [12] and Bio-PEPA [14].

2.6 The Challenge of Combinatorial Explosion in
Reaction Systems

The term of combinatorial explosion in reaction systems referes to the rapid
growth of reactions and molecular species even if the number of reactions or
start conditions are increased only slightly. Due to the nature of reactions and
protein–protein interactions, combinatorial explosion is a feature observed
so frequently in reactive systems that it may be regarded as an inherent
property of such.

2.6.1 Combinatorial Complexity
in Protein–Protein Interaction Networks

For protein–protein interactions, consider the number protein complexes
which may be formed from a set of proteins. In the simple case of indepen-
dent reactions and where the protein complexes take the form of a chain,
the number of possible complexes is given by the number of substrings
of the longest chain. If there are n proteins interaction to form a chain in
which each protein occures exactly once, there exist n2+n

2 different protein
complexes.

An even more drastic increase of possible species occures in proteins with
multiple interaction sites. Given, for example, a protein having m phospho-
rylation sites where each site may be phosphorylated or dephosphorylated
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independently of the other sites, then there are 2m possible configurations
for this protein.

Even moderatly sized models of biochemical systems with a few dozend
rules easily result in billions and more of possible complexes [22]. Such huge
number of species renders simulations of the system difficult if not practicaly
impossible. Therefore, the systems must be simplified, approximated or
otherwise reduced to limit the number of species.

2.6.2 Methods for Model Reduction

Numerous model reduction methods for biochemical systems have been
published recently which all share the same basic idea: A decrease in the
level of detail, in order to yield a macroscopic view of observable properties,
reduces the size of a model without changing its properties with respect to
these observables. This is a procedure called exact model reduction or coarse
graining.

A reduction method for systems of ordinary differential equations (ODEs)
was developed by Conzelmann et al. [16] in 2006 (see also [15, 17]). Consid-
erations from control theory and dependencies between protein domains are
used to reduce the number of differential equations in hierarchical models
while preserving the macroscopic properties of the system.

The domain-oriented reduction described by Borisov et al. [9] is a similar
to above method and also based on dependencies between protein domains.
It allows for automatic reduction of models given in the graph-like BioNet-

Gen language, yet produces incorrect results for indirect dependencies.
An approach to model reduction which works also for non-hierarchical

systems and indirect dependencies has been developed by Feret et al. [37] in
2009. Models given in the κ calculus [21] are reduced automatically while
the ODE sematics of the system are preserved [23, 25, 37].
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3
Graph Grammar Slicing

I introduce graph grammar slicing as an approach to limiting a graph
grammar to only as little information as necessary to follow the evolution
of a graph pattern during derivations. The principles of graph grammar
slicing are inspired by those of program slicing [61], a technique developed to
debug and analyze computer programs: Program slicing reduces a program
to only those instructions that affect a single variable or a set thereof. Various
variants of program slicing exist, including dynamic and static slicing [60].
While the former is applied on source code without further information on
the input, dynamic slicing also takes the input into account. Both methods
have different strengths and weaknesses, depending on the application.

I transfer the concept of slicing from programs to graph grammars. Signifi-
cant differences include how a slice is defined, what properties are preserved
within the slice and what it means for an element to depend on another.

In the first section, mathematical tools required for the remainder of
this chapter are introduced. This includes classic as well as more recent
definitions and results of category theory.

The semantics of changes in graph grammars are examined in Section 3.2;
pattern change identifiers are introduced as categorical means to formalize
the effects of rewriting steps on patterns. Additionally, chemical graph
grammars are introduced as well-behaved systems which are suitable as
models of chemical processes. This is followed by the introduction of graph
grammar equivalence, a term defined to capture the idea of systems behaving
identically with regard to a pattern.

One of the main results of this thesis, formal definitions for graph gram-
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mar slicing as well as basic properties of such, are given in Section 3.3. We
first introduce specialized productions as a central concept of graph gram-
mar slicing; specialized productions reduce the number of graphs which a
production can be applied on.

Finally, Section 3.4 gives a brief overview over application possibilities of
graph grammar slicing in systems biology. These claims are supported by
showing that graph grammar slicing can be automated, giving straightfor-
ward algorithms for the computation of slices.

3.1 Category Theoretical Tools for Grammar Slicing

The algebraic approach to graph rewriting, especially in the double pushout
approach [19], relies heavily on constructs and results from category theory.
Since we follow the algorithmic approach here, graph grammar slicing is also
going to be developed in categorical terms. In this section, we review recent
category theoretical results developed as generalizations and extensions
of double-pushout rewriting. For a detailed yet general introduction to
category theory, see for example Mac Lane [46].

3.1.1 Adhesive Categories

Adhesive categories, introduced in 2004 by Lack and Sobociński [44], in-
clude many categories arising in graph theory that are used in computer
science and biological modeling. They provide a generalization of the double-
pushout approach to graph rewriting. We will use some of their properties,
as the category of typed graphs is an adhesive category.

We first define the notion of a van Kampen square which is a pushout for
which a cube, having the pushout square as its bottom, enjoys additional
properties.
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Definition 3.1 (Van Kampen square) A van Kampen square is a pushout

C B
f

A Dg

m n (3.1)

such that for a commutative cube that has diagram (3.1) as its bottom face
and pullbacks as back faces,

C′

A′

C

A

m′

c

a

m

B′

D ′

B

D

n′

b

d
n

g ′

g

f ′

f

(3.2)

the front faces are pullbacks if and only if the top face is a pushout.

Adhesive categories are well behaved, in that the categorical limits most
interesting in rewriting are guaranteed to exist and are well-behaved.

Definition 3.2 (Adhesive Category) A category C is adhesive if

1. C has pushouts along monomorphisms;

2. C has pullbacks;

3. pushouts along monomorphisms are van Kampen squares.

The value of adhesive categories for rewrite systems is given by the fact
that properties desirable for rewriting in the double pushout approach hold
in all adhesive categories.

Fact 3.3. The following statements hold in adhesive categories:

1. Monomorphisms are stable under pushout.
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2. Pushouts along monomorphisms are also pullbacks.

3. If the pushout complement of monomorphisms exists, then it is unique up
to isomorphism.

Many basic categories are adhesive, including the category of graphs and
graph morphisms as well as its comma categories. This allows us to use
the abstract framework of adhesive categories for our description of graph
grammar slicing.

Fact 3.4. The following categories are adhesive categories:

• The category Set of sets and functions;

• the category Graph of untyped graphs and graph morphisms;

• the category GraphT of graphs typed over a graph T and typed graph
morphisms.

See the paper of Lack and Sobociński [44] for further discussions and for
proofs of above facts.

3.1.2 Subobjects

The concept of objects being a part of a bigger object, like for example subsets
or subgraphs, is transferable into a categorical context. The categorical
definition of subobjects is based on isomorphic monomorphisms.

Given an object C of a category C, a subobject of an object C in C is an
isomorphism class of monomorphisms a : A→ C into C, where two mor-
phisms a : A→ C and b : B→ C are isomorphic if there exists an isomorphism
i : A→ B such that a = b ◦ i.

A preorder is imposed on subobjects by a relation

(a : A→ C) ≤ (b : B→ C)

defining the subobject a to be less than b precisely if there exists a morphism
f : A→ B such that a = b ◦ f .

Subobjects are morphisms, but if there is no confusion, it is often conve-
nient to identify a subobject a : A→ C with the domain A of the morphism.
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We write A � C to denote that there exists a monomorphism from A to C.
Whenever the specific monomorphism is of interest it will be refered to or
defined explicitly.

The notion of patterns used in this thesis is based on subobjects. Subobjects
of objects in adhesive categories behave nicely in that their coproduct, the
categorical equivalent to a binary union, always exists.

Fact 3.5. Given an object C of an adhesive category C, the category sub(C) of
subobjects of C has binary coproducts; for two subobjects a,b ∈ sub(C) of C, the
coproduct is the pushout of their intersection.

Patterns and subobjects in the adhesive category of graphs and graph
morphisms are discussed in Section 3.2.1.

3.1.3 Final Pullback Complement

Like the well-known pushout complement, a pullback complement is a
construct used in rewriting to complete a pair of composable arrows into
a square [29, 34]. The advantage of a pullback complement over the more
traditional pushout complement is that often the former exists even when
the latter does not [20]. Different types of pullback complements exist,
characterized by their relation to other pullback complements. While most
authors often use the term pullback complement to mean the maximal or final
pullback complement, we also make use of the minimal pullback complement
which matches all other possible complements.

Definition 3.6 (Maximal pullback complement) The maximal pullback com-
plement of composable arrows A

a→B
b→C is a pair of arrows A

i→D
d→C such

that the square A
a→ B

b→C
d← D

i← A is a pullback and for each pullback

A′ a
′→B b′→C d′← D ′ i′← A′ and for each f : A′→ A such that a′ = a◦f there exists

a unique g : D ′→ D such that d′ = d ◦ g and i ◦ f = i′ ◦ g. Within diagrams,
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maximal pullback complements are marked by the symbol .

A′

A

B

D

C

D ′
f

a′

i′

a

i

b

d′

g

d

(3.3)

Example 3.1 (Maximal pullback complement) Given a pair of composable
arrows like

a b

c

d
e

a b

c

d
e

a

c

d

a pullback complement is given by

a b

c

d
e

a b

c

d
e

a

c

d a

c

d

The additional vertices in the rightmost graph are always added to the
new graph, while edges are added only if source and target vertex of the
edge are within the new graph. This demonstrates a central property of the
maximal pullback complement of graphs, namely that the maximal pullback
complement is a restriction of the second morphism on the first.

Maximal pullback complements always exist in the category of graphs
and graph morphisms; furthermore, if two composable arrows are monic,
then so are the arrows of their maximal pullback complement [20].
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We omit the definition for minimal pullback complements, since it is
similar to the maximal pullback complement but with arrows f , g, a′ and d′
reversed.

Note that the minimal pullback complement of two monic morphisms

A
a→B

b→C is trivially given by A
id→A

b◦a→C.

Lemma 3.7. Let A
f1→C g1→X g2← B

f2← A be a pullback and let Y
h1→A f2→B f3← D

h2← Y
be a square such that the diagram below commutes.

A

B

C

D

f1

f2

f3
X

Y

g1

g2

h1

h2 (3.4)

If all morphisms above are monic then the following statements hold:

1. The left square is a pullback if and only if the outer square is a pullback.

2. If B is a maximal pullback complement in the right square, then D is a
maximal pullback complement in the left square if, and only if, D is also a
maximal pullback complement in the outer square.

3. If B is a minimal pullback complement in the right square, then D is a
minimal pullback complement in the left square if, and only if, D is also a
minimal pullback complement in the outer square. Under these conditions
B = A and D = Y .

Proof. We prove only the forward implications, as the proof of the reverse is
similar for each.

1. Let Y ′ be the pullback of the span C← X→D. Due to the universal
property of A as a pullback object, there exists a unique morphism
u : Y ′→ A such that all triangles commute. Likewise, Y is a pullback
object, so the existence of commuting morphisms u and h′2 implies
that there exists a unique morphisms u′ : Y → Y ′ which makes dia-
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gram (3.5) commute.

A

B

C

D

f1

f2

f3
X

Y

g1

g2

h1

h2

Y ′ h′1

h′2

u

u′

(3.5)

On the other hand, there must be a commuting morphism u′′ : Y ′→ Y
since Y is a pullback. Hence, Y ′ is also a pullback of (B,f2, f3) and
Y = Y ′ due to the uniqueness of pullbacks up to isomorphism.

2. Let Y
y→ Z

z→ X be the maximal pullback complement of the outer
square. Since B is a maximal pullback complement, there must be an
unique morphism v : Z→ B such that z = g2 ◦ v. From the first part of
the lemma it follows that all squares are pullbacks, hence there is also
a unique commuting morphism u′ : D→ Z. It follows that Z =D.

3. This trivially follows from the definition of minimal pullback comple-
ments.

3.2 Pattern Changes in Graph Grammars

The idea of graph grammar slicing was inspired by a problem frequently
encountered in molecular biology: How does the occurrence of certain
structures within a system change over time? Translated to the graph-based
model, the equivalent question is how does the occurrence of a graph change
in the process of graph transformations.

We first introduce the notion of patterns, which is based on subobjects as
defined in Section 3.1.2; this is followed by a formal description of changes
on patterns and chemical grammars, which provide a suitable basis for
grammar slicing. The section is concluded with an analysis of grammar
equivalence with respect to pattern changes.

30



3.2 Pattern Changes in Graph Grammars

3.2.1 Patterns and Pattern Changes

Formally, a graph pattern or just pattern is a graph. A pattern F occurs in a
graph G if there exists a monic graph morphism f : F→ G from the pattern
F into the graph G. The morphism f is a subobject of G and is referred to as
a match of F in G.

Example 3.2 (Graph pattern) A simple example of a graph pattern is given
by

a

c

d
F1 =

.

Occurrence of a graph pattern, here in the example of the above pattern F1,
G0, is marked visually:

a b

c

d
e

G0 =

Note that the frequently encountered graph theoretical notion of induced
subgraphs is distinct from the notion of matched subgraphs as defined by
the existence of monomorphisms. While the former requires that all edges
between vertices in the image of a morphism are included in the induced
subgraph, there is no such implicit additon of edges in the latter case: Only
edges which are the image of an edge in the source graph are considered a
part of the matched subgraph.

In graph grammar slicing, graph patterns take the role that variables
play in program slicing: While a sliced program is indifferentiable from
the original program with regard to changes of selected variables, graph
grammar slicing intends to preserve the possible changes to a graph pattern
between original and refined graph grammar. Therefore, we need a method
to formalize the concept of pattern changes.

In the following, a method for the description of changes to patterns is
developed. This framework is then used to give a formal meaning to the
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conceptual idea of graph grammars which are indifferentiable with regard
to pattern changes.

The framework of double pushout rewriting is based on spans, so it is
natural to express the changes to a pattern using a span. While pushouts are
of fundamental importance for this approach, they are not a suitable basis
for the definition of such spans, which is why we resort to pullbacks and
pullback complements.

Definition 3.8 (Pattern change span) Let s = B
b← A

c→C be a span, F a pattern
and f : F→ B an occurrence of F in B. The maximal (minimal) pattern change
span of s with respect to f , written s/+f (s/−f ), is a span sf = F

p← J
k→ K

along with a span morphism (f : F→ B,φJ : J → A,φK : K → C) such that

F
p← J

φJ→ A is the pullback of F
f→ B

b← A and J
k→ K

φK→ C is the maximal

(minimal) pullback complement of J
φJ→A

c→C:

F J K
p k

B A C
b c

f φJ φK (3.6)

The term pattern change span is used whenever either the maximal or
minimal pattern change span is meant and the difference between the two
is irrelevant. As usual in category theoretical approaches, we regard spans
as unique only up to isomorphism. Two spans s = B← A→ C and s′ =
B′← A′→C′ are isomorphic, denoted s � s′, if there exists an invertible span
morphism

(φ : s→ s′) = (φB : B→ B′ ,φA : A→ A′ ,φC : C→ C′)

such that all squares commute.

Theorem 3.9 (Existence and uniqueness of pattern change spans). Let all
morphisms of a span s and an occurrence f be monomorphisms in the category
GraphT of typed graphs and typed graph morphisms. Then the pattern change
span of s with regard to f exists and is unique up to isomorphism.
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Proof. The category GraphT is an adhesive category [44], hence it has all
pullbacks and the pullback in the left square in diagram (3.6) exists and is
unique up to isomorphism. Likewise, the minimal as well as the maximal
pullback complement of two composable morphisms exist in the category of
graphs and both are unique up to isomorphism (see Corradini et al. [20]).

Example 3.3 An example of a maximal pattern change span, here for a match
of the pattern F1, is given below.

a b

c

d
e

a b

c

d
e

a b

c

d
e

a

c

d a

c

d a

c

d

The lower span is the application span of some derivation on the graph G0
defined above, while the upper span is the corresponding pattern change
graph of F1. Note how the occurrence of F1 is destroyed in both spans.

In biological contexts, not only the changes to a pattern are of interest, but
also what production triggered this change: For example, when a protein is
dephosphorylated, it may make a difference if the reaction was catalyzed
by a slow, unspecific phosphatase or by a fast, highly specific phosophatase.
Given a phosphorylated protein as a pattern, these reactions would result
in the same protein change spans within our graph based model. We make
allowance for differentiation of these processes within our framework by
inclusion of the production’s name into the pattern change identifier.

Definition 3.10 (Pattern change identifier) The tuple (p,s′) is a maximal
(minimal) pattern change indicator of a production (p : L

l← I
r→R) if s′ is a

maximal (minimal) pattern change span of the rule span L← I→R. Likewise,

(p,s′) is a pattern change indicator of a derivation % = (G
p,mL
===⇒ H), if s′ is a

pattern change span of the derivation’s application span app(%).

33



3 Graph Grammar Slicing

A pattern change indicator is called trivial if its pattern change span is an
identity span, that is if both morphisms are identity morphisms.

As for pattern change spans, the classifiers maximal and minimal are
dropped in the term pattern change indicator whenever this detail can be
omitted.

Two pattern change identifiers (p,s) and (p′ , s′) are isomorphic if p = p′
and s � s′.

If there exists a pattern change identifier for a production, then this
identifier is carried over to the derivations over the production. This means
that all direct derivations using a production with an occurrence of a graph
pattern in the rule span will have the same pattern change indicator as the
production.

Lemma 3.11 (Transfer of a production’s pattern change identifiers). Let

(p : L
l← I

r→ R) be a production, f : F → L a match and p/f = F
jF← J

jK→ K a

corresponding pattern change span. For all p-derivations % : G
p,mL
===⇒ H there

exists a match f ′ : F → G, such that ((p,J),F
jF← J

jK→ K) is the corresponding
pattern change indicator.

Proof. Let j : J → I and f ∗ : K → R be functions such that the square J
jF→F

f→
L

l← I
j← J is a pullback and J

jK→K
f ∗→R

r← I
j← J is a pushout as depicted in

diagram (3.7).

F J K
jF jK

L I R
l r

G C H
g h

f j f ∗

mL mI mR

(3.7)

The required occurrence of F in G is given by the composition f ′ =mL ◦ f
of the occurrence f of F in L and the match mL of L in G. Since the lower left

square I
l→L mL→G g← C

mI← I in diagram (3.7) is a pushout, it follows by Lemma
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3.7 that the left outer square is a pullback and the right outer square is a

pullback with K being a maximal pullback complement. Hence, F
f← J

k→K
is the derivation’s pattern change span.

3.2.2 Chemical Graph Grammars as Well-Behaved Systems

The definitions introduced in this chapter are valid for all graph grammars.
However, the focus of this work is on graph grammars modeling reactive
systems, so some of the results presented in the following are valid only for
grammars with additional properties.

We impose simple yet important limitations on the graph grammars un-
der consideration, which is justified by the fact that these limitations are
common features of reactive systems. In the following, we assume that the
applicability of the rules in the graph grammars and the result of the appli-
cation are purely match determined, meaning that every existing match of
the left hand side of a rule will always satisfy the dangling and identification
conditions.

The identification condition requires that two objects of which one is pre-
served and the other is deleted, must not be mapped to the same image. This
can happen only for non-injective morphisms; however, injective matches
are the intuitive and traditional way in which chemical reaction rules are
interpreted, ensuring such basic properties as mass preservation within a
reaction. Restricting to the category theoretical generalization of injective
morphisms, namely monomorphisms, is therefore a reasonable limitation in
the context of reaction networks. Consequently, the identification condition
will always be met.

The dangling condition requires that there may not be any dangling edges
after the rewrite step. An edge is dangling if it has either a source vertex or
a target vertex, but not both. Such edges are produced when the source or
target vertex of an edge is deleted in a production while the other vertex is
preserved. In any typical chemical reaction system, elements may be deleted
if they interact with their environment in a specific, unambiguous way.
These interactions are reflected in deletion process modeling productions
that require enough context to ensure that the surrounding context of all
deleted elements is completely specified. This renders the occurrence of
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3 Graph Grammar Slicing

dangling edges as a result of vertex deletions impossible. The dangling
condition is therefore satisfied in rewrite steps regardless of the applied
production and match.

Restrictions on the grammars under consideration are captured in the fol-
lowing definition. Recall that an object A for which there exists a monomor-
phism into another object C, the object A is called a subobject of C (see
Section 3.1.2)

Definition 3.12 (Chemical grammar) Let GraphT be the category of graphs
typed over T , let M be a class of objects in GraphT called molecules and
let sub(M) be the class of subobjects of the elements ofM. Furthermore,

let Π = {p : Lp
lp← Ip

rp→ Rp}p∈P be a set of linear productions such that the
components Lp, Ip,Rp ∈ sub(M) are subobjects ofM for all p ∈ P . A grammar
G = (T ,G0, P ,Π) is chemical if the following conditions hold:

1. G0 ∈M,

2. all productions are completely application safe and

3. for all derivations G
np ,mL

====⇒H with p ∈ P , if G is a molecule, then so is
H .

Here a production π = (p : L
l← I

r→ R) is called application safe if for all
matches m : L→ G into some subobject in sub(L(G)), the dangling condition
is satisfied. It is called completely application safe in G if it is invertible and
both π and π−1 are application safe.

Note that, while for each derivation in a chemical grammar there must
exist an inverse derivation, the inverse production is not necessarily within
the set of productions of the grammar and hence the inverse derivation may
very well not exist in the set of the grammar’s possible derivations.

Example 3.4 (Chemical graph grammar) As a running example, in this chap-
ter we will use graphs typed over the graph

a b

c

d
e

T =
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3.2 Pattern Changes in Graph Grammars

which was presented first in Example 2.1. The classM of objects is the set of
graphs satisfying all of the following conditions:

• Graphs must be typed over T .

• The graph must not contain any parallel or anti-parallel edges.

• The sum of the in-degree and the out-degree must be at most 4 for
vertices of type a and at most 3 for types b, c, d and e.

The productions in this example only change the directions of edges. This
is similar to the edge relabeling approach for chemical reactions by Rosselló
and Valiente [57]. The graph morphisms in the productions below are not
given explicitly but are implied by the vertex labels.

Production p1 inverts an edge a→ c if there is also an edge from a to e:

a

c

e

a

c

e

a

c

e

l1 r1p1 :

The second production p2 checks for the existence of two edges into e from
both a and d and for an edges from a to d and then inverts all edges adjacent
to e.

ad
e

ad
e

ad
e

l2 r2p2 :

If there is a feed forward loop from e to d going through a, then application
of production p3 converts the loop into a clockwise cycle.

ad
e

ad
e

ad
e

l3 r3p3 :

Finally, production p4 inverts an edge a→ b if it exists.
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a

c

e

a

c

e

a

c

e

l1 r1p1 :

a b

c

d
e

a b

c

d
e

a b

c

d
e

g0 g1

mL mRmI

Figure 3.1: An example of a direct derivation based on Example 3.4.

a b a b a b
l4 r4p4 :

Taking the production names P = {pi}i∈{1,2,3,4} and Π = {p : Lp
lp← Ip

rp→
Rp}p∈P , the grammar GE = (T ,G0, P ,Π) is a chemical grammar for every
T -typed start graph G0. Here we set

a b

c

d
e

G0 =

An explicit example of a direct derivation of on this example grammar
is given in Figure 3.1. A depiction of all derivations which are possible in
GE is given in Figure 3.2. It is easily verified from the latter figure that the
grammar is indeed similar to a chemical reaction system in that no vertices
are deleted and the number of edges is kept constant.

3.2.3 Global Pattern Changes in Chemical Graph Grammars

Pattern change spans as defined in Definition 3.8 contain information about
changes to a pattern on the local level of rules and direct derivations. The
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a b

c

d
e

a b

c

d
e

a b

c

d
e

a b

c

d
e

a b

c

d
e

a b

c

d
e

a b

c

d
e

a b

c

d
e

a b

c

d
e

a b

c

d
e

a b

c

d
e

a b

c

d
e

p1

p2

p4
p2

p4

p3

p4

p4

p1

p2

p2

p3

p4
p3

p3
p4

Figure 3.2: All possible derivations of the example graph grammar presented
in Example 3.4. The graph pattern F1 is highlighted when present
in a graph. Parallel derivation edges are generated by the same
production.
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global view of possible changes in a grammar is captured by characteristic
sets of pattern changes.

Definition 3.13 (Characteristic set of pattern changes) Given a pattern F, a

production (p : L
l← I

r→R) and a grammar G = (T ,G0, P ,Π), the characteristic
set of p-mediated F-changes in G, denoted χFG(p), is the union of all non-trivial
pattern change indicators of F-occurrences in p-derivations that are possible
in G:

χFG(p) = {app(%)/f | % ∈ Rp, f : F→ G, app(%)/−f is non-trivial}
where

Rp = {G p,mL
===⇒G H | G0⇒∗G G}

is the set of possible p-derivations.
We write

χFG(Π) =
⋃
p∈Π

χFG(p)

to denote the set of all non-trivial pattern change indicators of a pattern F in
G.

Example 3.5 (Characteristic pattern changes) The set of characteristic pat-
tern changes of pattern F1 for the chemical graph grammar specified in
Example 3.4 is given by the following set of pattern change identifiers:

a

c

d a

c

d a

c

d

l1 r1p1

a

c

d a

c

d a

c

d

l3 r3p3

There also exist pattern change identifiers generated from derivations
using productions p2 and p4, but those pattern change identifiers are trivial
and therefore not in the characteristic pattern change set. Hence, the pro-
ductions p1 and p3 are the only productions in the example grammar that
directly affect the pattern F1.
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3.2 Pattern Changes in Graph Grammars

We are now able to define equivalence of grammars with regard to a
pattern. Basically, we say a grammar G is equivalent to another grammar G′
with respect to a graph pattern if they can affect the pattern in the same way.

Two characteristic sets of F-changes are isomorphic, written χFG(Π) �
χFG′ (Π

′), if there exists a bijection f : χFG(Π)→ χFG′ (Π
′) between the sets such

that c � f (c) for all c ∈ χFG(Π).

Definition 3.14 (Equivalence of Graph Grammars) Given a graph pattern
F and graph grammars G = (T ,G0, P ,Π) and G′E = (T ′ ,G′0, P

′ ,Π′), the graph
grammars are F-change equivalent, denoted G ≡F G′, if the characteristic sets
of F-changes are isomorphic:

χFG(Π) � χFG′ (Π
′).

Example 3.6 (Equivalent graph grammars) Given the pattern

a

c

d
F1 =

from Example 3.2, we examine the characteristic change set of the grammar
G′E = (T ,G0, P

′ ,Π′), where the set Π′ is given by the productions

a

c

d
e

a

c

d
e

a

c

d
e

l′1 r ′1
p′1 :

a

c

d
e

a

c

d
e

a

c

d
e

l′2 r ′2
p′2 :

a

c

d
e

a

c

d
e

a

c

d
e

l′3 r ′3
p′3 :

The derivations possible with G′E are depicted in Figure 3.3. It is easily
verified that the characteristic F1-pattern changes χFGE (Π′) are given by
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a

c

d
e

a

c

d
e

a

c

d
e

a

c

d
e

p′1 p′2 p′3

Figure 3.3: All possible derivations of the graph grammar G′E defined in
Example 3.6

.

a

c

d a

c

d a

c

d

l1 r1p1

a

c

d a

c

d a

c

d

l3 r3p3

and therefore equal to the pattern change set χFGE (Π) as is shown in Exam-
ple 3.5. It follows that the grammars G′E as defined above and GE , defined in
Example 3.4, are F1-change equivalent.

3.3 Slicing of Graph Grammars
with Respect to Patterns

A model of computation based on graph grammars is inherently nondeter-
ministic, and the data present at any time directly influences which com-
putations are possible. The aim of this section is to define slices of graph
grammars as refined grammars preserving all computations relevant with
regard to a pattern. We start by introducing specialized productions, which
restrict the applicability of productions without affecting the graph trans-
formation capabilities with regard to a pattern. This leads to the discussion
of pattern-affecting graphs, the graph grammar equivalent to dependencies
in program slicing. It is then continued with the introduction of graph
grammar slicing, an approach to soundly restrict complex grammars to the
components with an effect on a graph pattern.
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3.3 Slicing of Graph Grammars with Respect to Patterns

3.3.1 Specializations on Graph Patterns

The ways in which a pattern may be changed within derivations depends on
the occurrences of the pattern within the graphs of the grammar’s language
and on the productions that can be applied on these graphs. However, a
pattern may be changed in a derivation step using a certain production
while another derivation using the same production may leave the pattern
unchanged. This depends on the subgraph on which the rule is applied:
The subgraph that is changed by the application of the production must
obviously overlap with the occurrence of a pattern in the processed graph.
This holds for creation of a pattern, where the overlap must be in the result
graph, as well as for destruction, where the overlap must be in the source
graph.

We formalize the possible effects of a production on a pattern using the
concept of specialized productions. These productions, which are more
specialized in the sense that they require a bigger subgraph to be matched,
are used to define dependencies of patterns on graphs. We start by defining
what it means for a pattern to overlap with a graph.

A partial match of F in X is a span of monomorphisms d = F
dF← D

dX→X.
The match is non-trivial if D is not the empty graph.

Example 3.7 (Partial match) Consider the pattern

a

c

d
F1 =

and the right hand side of the production p1 from Example 3.4,

a

c

e

R1 =

Then the spans

a

c

d a

c

a

c

e

dF1 dR1
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3 Graph Grammar Slicing

and

a

c

d a a

c

e

dF1 dR1

are both partial matches of F1 in R1.

Partial matches mark subgraphs that are similar in two graphs. Further-
more, the matched regions may be merged such that the two graphs are
fused to create a new graph. For patterns and productions, this is used
here to create new, specialized productions, such that the partial match is
extended to become a complete match.

Roughly speaking, a specialized rule is identical to the original rule with
regard to the part of the graph that is being rewritten, but requires additional
context. The bigger context graph effectively reduces the set of graphs the
rule can be applied on.

Definition 3.15 (Specialized production) Let F be a pattern, let (p : L
l← I

r→R)

be a production, let F
dF← D

dL→L be a partial match of F in L and let (L′ ,mF ,mL)
be its pushout. A left specialized production over (dF ,dL) is a production

((p,I ′) : L′ l′← I ′ r′→R′) such that there exists a span morphism

φ = (φL : L→ L′ ,φI : I → I ′ ,φR : R→ R′)

for which all squares in diagram (3.8) are pushouts.

D

F

dF

L

dL

I R
l r

L′ I ′ R′
l′ r ′

φL φI φRφF

(3.8)

Analogously, given a partial match F
dF← D

dR→L and its pushout (R′ ,mF ,mR),

a right specialized production over (dF ,dR) is a production ((p,I ′) : L′ l′← I ′ r′→R′
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3.3 Slicing of Graph Grammars with Respect to Patterns

such that there exists a span morphism (φL : L→ L′ ,φI : I → I ′ ,φR : R→ R′)
for which all squares in diagram (3.9) are pushouts.

D

F

dF

R

dR

IL
l r

L′ I ′ R′
l′ r ′

φL φI φR mF

(3.9)

A productions is a specialized production if it is a left or right specialized
production. The above span morphisms are also called the left and right
specialization morphism, respectively.

The original production name is extended by the specialized context, so
that specialized productions still may be indexed over their production
names. It is worth stressing that specialized productions are closely related
to the notion of rewriting with borrowed context as defined by Ehrig and
König [32].

Example 3.8 We generate a specialized production of production p4 which
was defined in Example 3.4:

a b a b a b
l4 r4p4 :

A specialization of the production p4 on the pattern

a b

c
F2 =

is the production (p′4, I
′
4 as specified below.

L′4 I ′4 R′4

a b

c

a b

c

a b

cl′4 r ′4(p′4, I
′
4) :
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3 Graph Grammar Slicing

The effect of specialization becomes clear when given a graph

a b

c

b
G =

for which there are two possible derivations using production p4. One
derivation uses the match in the left of the graph, the second one the match
on the right. However, the left hand side of specialized rule p′4 has only one
match in above graph; it is specialized on the destruction of the pattern F2.

A production (p : L
l← I

r→R) is applicable in a graph grammar G if there
exists a graph G ∈ L(G) and a match mL : L→ G such that both the dangling
and identification condition are satisfied by the match. This is equivalent
to stating that there is at least one derivation using p that is possible in
G. If a production is not applicable in a grammar, then the grammar will
produce the same language of reachable graphs and the same set of possible
derivations regardless of whether the production is within the grammar’s
production set or not. This can be regarded as a measure for soundness and
relevance of a production.

Theorem 3.16 (Existence and uniqueness of specialized rules). Let F and
D be patterns, let π = (p : L

l← I
r→R) be an application safe production that is

applicable in a chemical grammar G and let F
dP← D

dL→ L be a partial match. If
there exists a graph G ∈ L(G) in the grammar’s language for which the pushout
object L′ of partial match D is a subobject, then the left-specialized production π
exists and is unique up to isomorphism.

The equivalent statement for a span F
d′P← D ′

d′R→ R and the right-specialized
production of π holds as well.

Proof. Suppose G ∈ G is a graph such that L′ � G. The definition of chemical
grammars implies that L′ is a subobject L′ ∈ sub(L(G)). Since π is an applica-
tion safe production by definition, satisfaction of the dangling condition is
guaranteed for any match s : L→ L′.
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3.3 Slicing of Graph Grammars with Respect to Patterns

Application safety is a central feature of chemical graph grammars. It
is desireable that this property is preserved in a refinement of such gram-
mar. This is the case if a new grammar is constructed using specialized
productions, as is shown by the following lemma:

Lemma 3.17 (Application safety of specialized productions). A specialized
production of an application safe production is itself application safe.

Proof. We assume (p′ : L′ l′← I ′ r′→R′) to be a specialized rule of (p : L
l← I

r→
R) for which φ = (φL : L→ L′ ,φI : I → I ′ ,φR : R→ R′) is the specialization
morphism. There is nothing left to show if there is no graph which is
matched by the left hand side L′. Therefore, let m′L : L′ → G be a match
of the left hand side into any graph G ∈ L(G). We show that the pushout

complement of I ′ l′→L′
m′L→G exists:

The production (p : L
l← I

r→R) is application safe and there is a morphism
mL = m′L ◦φL from its left hand side into the graph G, hence the pushout

complement I
i→C

g→G exists. Pushouts along monomorphisms exist, so

there is also an object C′ and morphisms I ′ i′→C′ c′← C such that the cube in
diagram (3.10) commutes.

I

I ′

C

C′

φI

i

i′

c′

L

L′

G

G

φL
mL

m′L
id

l′

g ′

l

g

(3.10)

The back and top faces are pushouts by construction. From that, it is easily
verified that all faces of above cube are pushouts. Therefore it follows that
C′ � C and we get (i′ , g ′) to be the required pushout complement.

Looking at the proof from a different perspective, we get the following
proposition:
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Proposition 3.18 (Isomorphic application spans of refined productions).

Given a production (p : L
l← I

r→R), a specialized production (p′ : L′ l′← I ′ r′→R′)
with specialization morphism (φL : L→ L′ ,φI : I → I ′ ,φR : R→ R′) and a match
m′ : L′→ G, it holds that

app(G
p′ ,m′
===⇒H) � app(G

p,(m′◦s)
======⇒H)

Proof. This readily follows from above proof, where it is shown that the
derivations context graphs C � C′ are isomorphic, implying isomorphism of
the complete application span due to the composability of pushouts.

Therefore, specialized productions also have the nice property to pro-
duce the same graph transformation as the original rule whenever both are
applicable on the same part of a graph.

3.3.2 Pattern-affecting Graphs

In the same manner in which a variable assignment depends on preceding
commands, occurrence of graph patterns is influenced by the occurrence of
other graphs. We define pattern-affecting graphs to account for the fact that
the creation or destruction of a pattern is subject to the existence of specific
graphs in a graph grammar.

A pattern is changed within a derivation if the minimal pattern change
span is not the identity span of the pattern. We focus on graphs for which
matching another graph ensures the possiblity of pattern modification. For
a match to be changed, its not sufficient that it overlaps with the left or right
hand side of a production, but furthermore there may not be a corresponding
partial match in the interface graph.

Theorem 3.19 (Pattern changing specializations). Let F
dF← D

dL→L be a partial
match of a pattern F into the left hand side of a production (p : L

l← I
r→ R).

The minimal pattern change span of the corresponding specialized production

(p′ : L′ l′← I ′ r′→R′) is the identity span of F if and only if there exists a morphism
dI : D→ I such that dL = l ◦ dI .
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3.3 Slicing of Graph Grammars with Respect to Patterns

Proof. Let F
jF← J

jK→K be the minimal pattern change span of the specialized
production. The graph J is a pullback so there is a unique commuting arrow
dJ : D→ J . The bottom face of the cube in diagram (3.11) is a van Kampen
square and the side faces are pullbacks, so the top face is a pushout.

D

J

D

F

dJ

id

jF

dF

I

I ′

L

L′

φI

l

l′

φL

fJ

f

dI

dL

(3.11)

Pushouts are composable and pullback complements are unique up to
isomorphism, so it follows J � F.

The forward implication follows from I being the pullback object of I ′ l′→
L′

φL← L and I ′
fJ ◦dJ← D

dL→L producing a commuting square with aforementioned
span. Hence there is a unique morphism from D to I .

Since we are interested in specialized productions that are guaranteed
to change the occurrence of a pattern, we can restrict the set of specialized
rules to those that are constructed from partial matches with no commuting
morphism to the interface graph.

Given a monomorphism x : I → X, the span (D,dF : D→ F,dX : D→ X) is
a pattern changing partial match of a pattern F in X if there is no lifting of d
to I making the triangle commute.

D

X IF

dX

x

dF
/ (3.12)

For convenience, we define a function that gives all pattern-changing
specializations of a production.
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Definition 3.20 (Pattern-changing specializations) Given a pattern F, a

graph grammar G = (T ,G0, P ,Π) and a production π = (p : L
l← I

r→R) with
p ∈ P ,π ∈Π, the F-changing specializations of π, denoted ζFG (π), is the set of
all specializations of π that are applicable in G and F-changing.

We write
ζFG (Π) :=

⋃
π∈Π

ζFG (π)

to refer to the F-changing specializations of all productions of the grammar
G.

A derivation using a specialized rule π′ ∈ ζFG (Π) will certainly affect the
occurrence of the pattern F. We only consider chemical graph grammars
here, so the specialized rules in ζFG (Π) are application safe (see Lemma
3.17). Hence, if the left hand side of a specialized rule in ζFG (Π) matches a
graph, then there exists a derivation affecting the pattern. This motivates
the following definition:

Definition 3.21 (Pattern-affecting patterns) Given a pattern F and a graph
grammar G = (T ,G0, P ,Π), the set of F-affecting pattern is the set of left hand
sides of F-changing specializations, that is

AFG = {L′ : (p′ : L′ l′← I ′ r′→R′) ∈ ζFG (Π)}.

Example 3.9 (Pattern-affecting graphs) Considering the pattern F1

a

c

d
F1 =

and the production

a

c

e

a

c

e

a

c

e

l1 r1p1 :

The pattern
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a

c

d
e

is the F1-affecting pattern for the production p1: For every graph matched by
this pattern there exists a derivation such that F1 is changed. For example,
given the matched graph

a b

c

d
e

there is a derivation

a

c

e

a

c

e

a

c

e

l1 r1p1 :

a b

c

d
e

a b

c

d
e

a b

c

d
e

g0 g1

mL mRmI

with a non-trivial F1 change span (matching of F1 is highlighted in the
derivation).

3.3.3 Definition and Properties of Graph Grammar Slices

Using the results from the previous sections of this chapter, we are finally
able to define and characterize graph grammar slicing. The aim of graph
grammar slicing is not to reduce the number of productions but to reduce
the number of possible derivations. However, the sliced version preserves
all changes with regard to a pattern while still resulting in the same or
smaller set of possible derivations as the original grammar. This is archived
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using beforementioned specialized productions which produce similar graph
transformations whenever they are applicable. However, the context graphs
of specialized productions is equal or greater to the original productions. As
a result, specialized productions can be applied on less graphs than their
unrefined counterparts.

The definition of graph grammar slicing below is followed by some of the
basic yet important properties of grammar slices. Roughly speaking, the
slices are refinements where all graph grammar details which do not affect
the occurrence of a pattern are omitted, while no new rewrite possibilities
are introduced. We give a recursive definition of a graph slice.

Definition 3.22 (Slice of a graph grammar) Let F be a pattern and G =
(T ,G0, P ,Π) a grammar. A grammar G′ = (T ′ ,G′0, P

′ ,Π′) is a slice of G over F
if the following conditions hold:

• G′0 � G0,

• F � G0 ⇐⇒ F � G′0,

• foreach production π′ ∈Π′ there exists a production π ∈Π such that
π′ is a specialization of π and

• G′ is also a slice for all elements in the set AFG of F-affecting patterns.

As for the basic properties, we first show that the possible derivations of
the slice are smaller in the sense that they can be embedded into the possible
derivations of the original grammar.

The application sequence of a derivation %′ is embeddable into a derivation
sequence % if there exist commuting morphisms between corresponding
graphs of the two derivations such that the sequential order is preserved.

Definition 3.23 (Embedding of span sequences) Let

s = G0
g1← C1

h1→G1← ·· · → Gn−1
gn← Cn

hn→ Gn

and

s′ = G′0
g′1← C′1

h′1→G′1← ·· · → G′m−1
g′m← C′m

h′m→ G′m
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be two span sequences with m ≤ n. The span sequence s′ is embeddable into s
if there exists a surjective order preserving function

α : {0, . . . ,n} → {0, . . . ,m} with i ≤ i′ =⇒ α(i) ≤ α(i′)

and a family of monomorphisms

ψ = {γ0 : G′0→ G0,γi : Gα(i)→ Gi ,χi : Xi → Ci}i∈{1,...n}
where

Xi =

Gα(i) if α(i − 1) = α(i)

Cα(i) otherwise

such that all triangles and squares commute. The family of monomorphisms
ψ is called the embedding morphism.

Basically, each span of the embeddable sequence matches into a span of
the target sequence, while on the other hand a span in the target sequence is
matched by either a span or a single graph of the embeddable sequence, as
is depicted below

G′j−1 C′j G′j C′j+1 G′j+1
g ′j h′j g ′j+1 h′j+1

CiGi−1Ci−1Gi−2 Gi Ci+1 Gi+1
g ′i−1 h′i−1 g ′i h′i g ′i+1 h′i+1

γi−2 χi−1 γi−1 χi γi χi+1 γi+1

Part of the usefulness of grammar refinement is given by the fact that the
set of possible derivations of original and refined grammar is similar.

Definition 3.24 (Application embeddable grammar) A grammar G′ is ap-
plication embeddable into G if for each sequential derivation %′ possible in
G′, there exists a derivation % that is possible in G such that the application
sequence of %′ is embeddable into the application sequence of %.

Theorem 3.25 (Application embeddability of sliced grammars). Sliced gram-
mars of chemical graph grammars are embeddable into the original grammar.
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3 Graph Grammar Slicing

Proof. We inductively prove that the application sequence of each sequential
derivation in G′ is embeddable into an application sequence in G. The base
case for the trivial derivation of the start graph G′0⇒∗G′ G′0 is obviously true
by definition of sliced graph grammars (see Definition 3.22).

Now let %′ = G′0 ⇒∗G′ G′j and % = G0 ⇒∗G Gi be sequential derivations
such that the application sequences app(%′) is embeddable into app(%). For
the induction step, it is sufficient to prove that for each direct derivation

%′ = G′j
p′ ,mj

L′
====⇒ G′j+1 with (p′ : L′ l′← I ′ r′→ R′) ∈ Π′ there exists a production

(p : L
l← I

r→R) ∈ Π and a direct derivation % = Gi
p,mL
===⇒ Gi+1 such that the

former production is a specialization of the latter. The application span
app(%′) = G′j← Cj+1→G′j+1 together with a suitable production name is a
specialization of p. This production is application safe (see Lemma 3.17) and
hence applicable on Gi since G′j � Gi . The rest follows from Proposition 3.18.

This is an intuitive result. A refined grammar has a smaller or equal
subgraph as the original grammar and a specialized production yields the
same rewrite step on a given graph whenever both can be applied. Since the
specialized productions are application safe, none previously inapplicable
production becomes applicable in the slice due to previously unsatisfied
dangling conditions. Hence, there is no way to produce derivations in the
slice that do not match the original grammar.

Grammar equivalence with regard to a pattern is a desireable as well
as intuitivly expected property of graph grammar slices. This is in fact
true due to the use of specialized productions in the definition of graph
grammar slicing: all pattern change identifier are captured within a specific
specialized rule:

Lemma 3.26 (Pattern change capturing specializations). Let f : F → G be

a match of F in a graph G and let % = G
p,mL
===⇒ H be a derivation of a linear

production (p : L
l← I

r→R). Then there exists a specialization (p′ : L′ l′← I ′ r′→R′)
of p on F and matches m′L : L′→ G and f ′ : F→ L′ such that f =m′L ◦ f ′ and

%/f = p′/f ′ .

54



3.4 Biochemical Application and Construction of Graph Grammar Slices

Proof. The pullback F
dF← D

dL→ L of f and m always exists in an adhesive
category. The morphisms dF and dL are monic [46, V.7], so the pushout

F
dL→ L′

αL→X
f← C

dF← F exists as well. The specialization (p′ : L′ l′← I ′ r′→R′)
of p over (dF ,dL) exists by Theorem 3.16 and is applicable on G due to the
universal property of L′. The rest follows from Lemma 3.26.

Since a sliced grammar contains specializations on all pattern matches,
this directly leads to grammar equiavlence.

Theorem 3.27. A slice of a chemical graph grammar over a pattern F is F-
equivalent to the sliced grammar.

Proof. Assume G′ = (T ′ ,G′0, P
′ ,Π′) is a slice of a chemical graph grammar

G = (T ,G0, P ,Π). It follows from Theorem 3.21 and from the definition of
graph grammar slices (Definition 3.22) that all productions in ζFG (Π) are
applicable in G′. Hence, by Lemma 3.11 and Lemma 3.26, it is

χFG′ (ζ
F
G (Π)) = χFG(Π).

3.4 Biochemical Application and Construction
of Graph Grammar Slices

The motivation for the development of graph grammar slicing originates
from the need to reduce comprehensive models of biochemical systems to
allow for quick answers of simple questions. In this section we will discuss
possible use-cases of graph grammar slicing. Furthermore, a brief outlook
into algorithmical aspects of graph grammar slices is given.

3.4.1 Modularisation and Reduction of Reactive Systems

As discussed in Chapter 2, many models of reactive systems are graph-based
or can be expressed using graphs and graph rewriting. Simulations of such
systems become increasingly difficult and even pratically impossible with the
escalating detail and complexity of models. In such cases, graph grammar
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3 Graph Grammar Slicing

slicing may be applied to extract the parts of a model that are relevant for a
pattern of interest.

A graph-based model of a chemical or biochemical given by reaction rules
can be regarded as a graph grammar, as is described Chapter 2. Graph
grammar slicing may be used to remove irrelevant detail from such model
and is therefore similar to the model reduction techniques discussed in
Section 2.6.2. In fact, the author believes that each of these methods are
special cases of graph grammar slicing, although a proof of this statement is
yet to be given and may be part of future work.

3.4.2 An Algorithmic Approach to Graph Grammar Slicing

Since construction of specialized productions is based on partial matches, we
generate and select those partial matches that have the potential to result in
a specialized production with the required properties. We give an algorithm
to generate pattern changing productions through the means of sufficiently
restrictive partial matches.

Given a pattern F and a production (p : L
l← I

r→R), a proper specialization

nucleus is a partial match d = F
dF← D

dX→X, X ∈ {L,R} together with its pushout
q = F

qF→Q
qX← X such that

• d is pattern modifying,

• Q is a subgraph of a molecule and

• the dangling condition is satisfied for qX : X→Q.

For each proper specialization nucleus there exists a F-changing special-
ized production and vice versa. However, not each F-changing production is
necessarily applicable in a given grammar.

Note that the pushouts of proper specialization nuclei are conceptually
related to the idem pushouts as described by Leifer and Milner [45]. Idem
pushouts are the basis for the model reduction technique introduced by
Danos et al. [25]. Furthermore, proper specialization nuclei are similar to
the fragment construction technique of Feret et al. [37].

As demonstrated by Algorithm 1, the explicit generation of proper special-
ization nuclei is possible. The function takes a pattern graph and a monic
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graph morphism and returns all proper specialization matches. Note that
the innermost test (if a graph is in the class of molecules) is highly applica-
tion dependent and may be non trivial. However, for protein graphs and
chemical graphs there exist axiomatic definitions which are checked easily.

Algorithm 1 Generate all proper specialization nuclei
function properSpecNuclei(F, x : I → X)

N ←∅
∆← elements of (X − x(I))
for all D ⊆ X with D ∩∆ , ∅ do

for all dF ∈ subgraphIsomorphisms(F,X[D]) do

(Q,qF ,qX)←pushout(F
dF← X[D]

id→X)
if Q ∈ sub(M) then . Is pushout a molecule pattern?

if danglingContitionSatisfied(ql ,x) then
N ←N ∪ {(Q,qF ,qX)}

end if
end if

end for
end for
return N

end function

The inner workings of Algorithm 1 are straightforward but leave much
potential for optimization for specific applications. For example in the case
of protein graphs, a pushout of a partial match does not exist in the category
of protein graphs, unless the partial match contains the neighboring protein
nodes of each site node. Observations like this might lead to a reduction of
the number of generated and discarded pushouts. However, these special
cases are disregarded here to ensure generality of the algorithm.

The generation of specialized linear productions closely follows Defini-
tion 3.15. Algorithm 2 allows for specializations on the left- or right hand
side, respectively. It is sufficient to handle left-specialization of a production,
that is specialization on pattern destruction: A specialization on the right
hand side may be traced back to the the left hand side case by inverting the
production, specializing on the left hand side and then invert the resulting
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production span.

Algorithm 2 Creating all specializations of a rule.
function specProds(F, π)

return leftSpecProds(F, π) ∪ rightSpecProds(F, π)
end function

function leftSpecProds(F, π)

Let π be given by (p : L
l← I

r→R)
S ← ∅
D← properSpecNuclei(F, l : I → L)
for all (Q,qF ,qp) ∈ D do

s← applyRule(Q,p,qL) . application span of Q
p,qL
===⇒Q′

S ← S ∪ {(p : s)}
end for
return S . Set of specialized rules

end function

function rightSpecProds(F, π)
S ←leftSpecProds(F, π−1)
for all π ∈ S do

π← π−1

end for
return S

end function

The specialization procedure itself takes all proper specialization nuclei,
generated by Algorithm 1 described above, and applies the production on
each pushout object Q using the match qL. The application span of this
derivation is then used as the production span of a specialized production.

The naı̈ve graph grammar slicing algorithm presented on page 60 is based
on Definition 3.22. The productions of the slice are generated by specializing
on each pattern for which the new grammar must be a slice. Each pattern
on which the specialization procedure has been applied is kept track of.
Therefore, no pattern is processed twice. As a result, if the set of molecules
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M is finite, then so is the set of graph patterns and the algorithm will
terminate.

The slicing algorithm presented here lacks several important features
such as checks for occurrence of patterns in a language and removal of
inapplicable specialized productions. This has implications for the average
runtime and termination for infinite sets of molecules. However, the purpose
of Algorithm 3 is just to demonstrate that computational generation of graph
grammar slices is possible, so the above details are disregarded intentionally.
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Algorithm 3 Generate a graph grammar slice with regard to a pattern F.
function grammarSlice(G, F)

Let G be given by G = (T ,G0, P ,Π)
F ← {F} . patterns to be tracked
Q← ∅ . tracked (processed) patterns
Π′←∅ . specialized productions
while F , ∅ do . get specialized productions for patterns

choose F ∈ F and remove it from the set
for all π ∈Π do

for all π′ ∈ specProds(F,π) do
L← LHS(π′)
if L <Q then . was pattern processed already?
Q←Q∪ {L}
F ← F {L}
Π′←Π′ ∪ {π′}

end if
end for

end for
end while

. determine new start graph
G′0← empty graph
for all Q ∈ Q do

for all matches m : Q→ G0 of Q in G0 do
G′0← G′0 ∪G0[m(Q)] . graph union with subgraph of G0

end for
end for
return (G′0,T ,P

′ ,Π′)
end function
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4
Conclusions and Outlook

In this chapter an overview of the results of this thesis is given. I fur-
thermore evaluate the results with the respect to the aims formulated in
Chapter 1. The potential and limitations of the graph grammar slicing ap-
proach presented in Chapter 3 are discussed, including its value for models
similar to those presented in Chapter 2. Finally we outline future work on
graph grammar slicing and its application in artificial chemistry and systems
biology.

4.1 Evaluation

The main aim of this thesis, as formulated in the introduction, was the devel-
opment of a model reduction technique for graph grammars for biological
and chemical applications.

It has been demonstrated that small chemical molecules as well as large
protein complexes can be modeled using constrained typed graphs. The
interactions and transformations of the species can been modeled as typed
graph transformations. This demonstrates how the same formal systems can
be applied on similar natural systems.

I have specified a slicing approach for graph grammars modeling chemical
or biochemical systems. This technique allows for the generation of graph
grammars that result in languages and in derivations which are embeddable
into the original grammar. The characteristic behavior of the grammar with
regard to a pattern graph is conserved in the slice.
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Given a graph grammar model of a chemical system, the slicing approach
developed here allows for modularization of the system. This can lead to a
significant reduction in the number of graphs and reactions in the model.

A limitation of the slicing approach is its current restriction to graph
grammars. Graph grammars are a suitable model only for a relatively small
number of molecules. Simulation of larger complex systems requires a
transformation of the graph-based model into Petri nets, stochastic systems
or networks of differential equations. However, there exist indications that
the slicing approach can be transfered to these models, yielding similar
embedding properties as graph grammar slices.

4.2 Future Work

The description of graph grammar slicing in this thesis is restricted to chem-
ical graph grammars. This avoids the problem of dangling conditions and
applicability of rules by removal of subgraphs and implies existence of con-
structs necessary for grammar slicing. It might be worth exploring if graph
grammar slicing can be generalized to non-chemical graph grammars and
adhesive grammars in general.

The formalization of graph grammar slicing is largely based on category
theoretical constructs, so the concept of grammar slicing is easily tranfered
and extended to other data structures than typed graphs. Furthermore, ex-
tensions to slicing with regard to patters are simple to develop and describe.
We give a brief overview of possible extensions and improvements of the
approach presented here.

Some small molecules, like adenosine triphospate (ATP), are abundant
within biochemical systems and participate in numberous reactions. Their
regulation in vivo ensures a nearly constant concentration within a cell.
It is therefore reasonable to assume a fixed value for such species in any
simulation, so this must be reflected in the way a slice is created. Instead
of including the complete model of cellular ATP metabolism, the slicing
algorithms should refrain from slicing the system with regard to ATP. This
is easily implemented using additional checks before recursing into slicing
with regard to a pattern.

An interesting alternative for typed graphs are graphs labeled with a struc-
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tured alphabet, which might offer a solution to combinatorial explosions
caused by minor model pertubations [24] and reactions of unspecific en-
zymes. Instead of using a flat set of labels, a structure is imposed on the set
of labels, yielding SC-graphs, which were introduced by Parisi-Presicce et al.
[53]. This greatly improves expressiveness of productions: For example, in a
biochemical context, this would allow to describe unspecific phosphatase
reactions. A single label could be defined to match a whole set of phosphory-
lation sites and the number of productions would be greatly reduced, since
one production suffices to describe dephosphorylation of different proteins.
Compare this to the typed graph-based model which requires specific pro-
ductions for each substrate. The method of grammar slicing would remain
valid for grammars of SC-graphs.

Another straightforward extension is slicing with regard to pattern change
identicators. This would be useful in cases where the concentration of a
pattern is irrelevant, but instead the rate of a class of reactions is to be
followed. This would require specialization on pattern change indicators
and might then be traced back to slicing with regard to patterns. Especially
in the case of flux analyses of metabolic pathways [1, 50], this might be of
value. However, the models in this thesis are by themselves not sufficient for
metabolic analyses, which require models to account for small molecules as
well as for large protein complexes. A possible approach might be given by
multilevel graph representations and transformation of graph grammars as
described by [52] but this may as well prove to be too complex.

Graph patterns are conceptually linked to observables, macroscopically
measurable properties of low-level systems. Grammar slicing enables to
focus on specific subparts of the model. This is a also desireable feature
for simulations generated from rule-based models. Relationship of graph
grammar slicing with such simulations is yet to be explored.

Our theory of graph grammar slicing is formulated using category theory.
Ehresmann and Vanbremeersch [30, 31] suggested category theory as a
foundation to formulate hierarchical models of biological systems. Their
approach makes excessive use of patterns in the description of hierarchies,
so the presented slicing technique may be transferable and useful in this
context.
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