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Abstract
In large but finite populations, weak demographic stochasticity due to random birth
and death events can lead to population extinction. The process is analogous to the
escaping problem of trapped particles under random forces. Methods widely used
in studying such physical systems, for instance, Wentzel–Kramers–Brillouin (WKB)
and Fokker–Planck methods, can be applied to solve similar biological problems.
In this article, we comparatively analyse applications of WKB and Fokker–Planck
methods to some typical stochastic population dynamical models, including the logis-
tic growth, endemic SIR, predator-prey, and competitive Lotka–Volterra models. The
mean extinction time strongly depends on the nature of the corresponding determinis-
tic fixed point(s). For different types of fixed points, the extinction can be driven either
by rare events or typical Gaussian fluctuations. In the former case, the large deviation
function that governs the distribution of rare events can be well-approximated by the
WKB method in the weak noise limit. In the later case, the simpler Fokker–Planck
approximation approach is also appropriate.
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1 Introduction

The extinction of local populations can happen frequently in nature, particularly in
small and fragmented habitats due to various causes, including genetic deterioration,
over-harvesting, climate change, and environmental catastrophes. Even in the absence
of all other causes, the finiteness of population size and the resultant demographic
stochasticity will eventually drive any isolated population to extinction. Therefore,
the expected time until population extinction due to demographic stochasticity alone
provides a baseline scenario estimation for the long-term viability of the population.
It is closely related to the concept of minimal viable population size, and is of great
importance to the conservation of species and global biodiversity (Shaffer 1981; Traill
et al. 2007).

The study of population extinction due to demographic stochasticity is a long-
standing yet rapidly advancing topic of research, with Francis Galton’s famous
problem of the extinction of family names already proposed in 1873 [for reviews
of the history see Kendall (1966)]. In the last decades, new mathematical tools have
been developed to analyse stochastic population dynamics. A number of such tools,
such as theFokker–Planck approximation and theWentzel–Kramers–Brillouin (WKB)
approximation methods, were originally developed for solving problems in statistical
mechanics and quantum mechanics. We can take advantage of analogies between bio-
logical systems and corresponding physical systems [e.g., the extinction of population
from a steady state driven by weak noise is very similar to the escaping problem of
particles in a trapping potential (Dykman et al. 1994)], and apply methods developed
for tackling physical problems to answering biological questions.

In this paper, we provide a pedagogical comparative study of theWKB and Fokker–
Planck approximation methods in analyzing population extinction from a stable state
driven by weak demographic fluctuations. We examine some widely-used stochastic
models of population extinction as examples, and show that the nature of the stable
states in the mean-field level determines the behaviour of the mean extinction time.
In systems with an attracting fixed point or limit cycle, extinction is caused by rare
events, the WKB method is a natural approach. For systems with marginally stable
states, since extinction is driven by typical Gaussian fluctuations, the Fokker–Planck
approximation is also valid.

2 Extinction Time of Populations Formed by a Single Species

2.1 The Deterministic Logistic GrowthModel

One of the most widely applied population growth model of a single species is the
logistic growth model, or the Verhulst model (Verhulst 1838). This model has been
extensively used in modelling the saturation of population size due to resource limita-
tions (Murray 2007; McElreath and Boyd 2008; Haefner 2012), and formed the basis
for several extended models that predict more accurately the population growth in real
biological systems, such as the Gompertz, Richards, Schnute, and Stannard models
[for a review, see Tsoularis and Wallace (2002)].
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The classic logistic model takes the form

dn

dt
= rn

(
1 − n

K

)
, (1)

where n represents population size, the positive constant r defines the growth rate and
K is the carrying capacity. The unimpeded growth rate is modeled by the first term
rn and the second term captures the competition for resources, such as food or living
space. The solution to the equation has the form of a logistic function

n(t) = Kn0ert

K + n0 (ert − 1)
, (2)

where n0 is the initial population size.Note that lim
t→∞ n(t) = K , and this limit is asymp-

totically reached as long as the initial population size is positive, and the extinction of
the population will never happen.

2.2 Population Dynamics Under Demographic Stochasticity

When the typical size of the population is very large (1/K � 1), fluctuations in the
observed number of individuals are typically small. In this case, the deterministic
logistic growth model generally provides a good approximation to the population
dynamics by predicting that the population will evolve towards and then persists at
the stable stationary state where n = K . However, in the presence of the demographic
noise, occasional large fluctuations can still induce extinction, making the stable states
in the deterministic level metastable. In any finite population, extinction will occur as
t → ∞ with unit probability.

In an established population under logistic growth with a large carrying capacity,
the population size fluctuates around K due to random birth and death events, and typ-
ically the fluctuation is small in the large K limit. But from time to time, a rare large
fluctuation can happen, and it may lead to the extinction of the population. In such situ-
ations, it is interesting and often biologically important to determine themost probable
paths and the mean extinction time, starting from the stable population size. A rigor-
ous approach for solving these problems in the weak noise limit is the large deviation
theory (Touchette 2009). We use the logistic growth model to illustrate the main idea.

Let the function T (n → m) represent the probability of the transition n → m per
unit time. For the logistic model T (n → n + 1) = λn = Bn describes the birth rate
of the popualtion, where B is the per capita growth rate, and T (n → n − 1) = μn =
n+Bn2/K describes the death rate of the population, in which the first term represents
spontaneous death, and the second term represents death caused by competition. The
function P(n, t) is the probability density for the system to be in the state with the
population of n at the time t , obeying a Master equation

dP(n, t)

dt
=

∑
m

[T (m → n, t)P(m, t) − T (n → m, t)P(n, t)]

= μn+1P(n + 1, t) + λn−1P(n − 1, t) − (μn + λn)P(n, t). (3)
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The initial condition P(n, t = t0) = δn,n(0). Since n = 0 is an absorbing state, for
m > 0, T (0 → m) = 0, we have

P(n = 0, t)

dt
=

∑
m>0

T (m → 0)P(m, t). (4)

The average population size n = ∑
n P(n, t)n satisfies a deterministic averaged

(mean-field) rate equation

dn

dt
= (B − 1)n − B

n2

K
, (5)

where we neglect the number fluctuation, namely, n2 = n2 (mean-field). Now we
have derived the stochastic version of the logistic growth function, corresponding to
Eq. (1). Equation (5) has two fixed points: an attracting fixed point ns = (B−1)K/B,
provided B > 1; and a repelling fixed point ne = 0 (extinction point). In the presence
of noise there is a quasi-stationary state for B > 1, in which the population fluctuates
near ns. However, the system eventually is going to reach n = ne = 0 driven by rare
events, where extinction happens. It is then important to estimate the extinction time.

The commonly used methods for estimating the time until extinction include
the Fokker–Planck approximation (also called diffusion approximation in population
genetics literature), and the Wentzel–Kramers–Brillouin (WKB) method. The former
has a long history of application in studying biological population dynamics, going
back to Fisher (1922), and was greatly promoted since the seminal work of Kimura
(1964). Nowadays it has become an indispensable topic in population genetics text-
books (Ewens 2004; Svirezhev and Passekov 2012). But despite its honourable place in
mathematical biology, the application of Fokker–Planck approximation is restricted
to systems where the extinction is driven by typical Gaussian fluctuations (such as
genetic drift), characterised by frequent but small jumps (Gardiner 1985). The WKB
method was introduced into biology much later (most works are published only in the
last two decades), yet it has been gaining popularity steadily, as it generally provides
more accurate predictions of the mean extinction time if the extinction is driven by
rare events, and can be applied under much broader conditions.

In the following we will first introduce the more general WKB method and then
the classic Fokker–Planck approximation, in order to facilitate the comparison of the
two methods later on.

2.2.1 Wentzel–Kramers–Brillouin (WKB) Method

The Wentzel–Kramers–Brillouin (WKB) method was named after the three physi-
cists Gregor Wentzel (Wentzel 1926), Hendrik Kramers (Kramers 1926) and Léon
Brillouin (Brillouin 1926). It provides a systematic and controllable approximating
method to calculate the mean extinction time in the small fluctuations limit. And it has
been applied widely in studying different extinction problems, such as large fluctua-
tions in numbers of molecules in chemical reactions (Dykman et al. 1994), the fixation

123

Author's personal copy



Applications of WKB and Fokker–Planck Methods. . .

of a strategy in evolutionary games (Black et al. 2012), and the extinction of epidemics
(Chen et al. 2017) .

In a finite population under logistic growth, once the stationary state is reached,
the population size fluctuates around the metastable attractor n̄s. The characteristic
scale of the fluctuations is of the order of 1/

√
K (Central Limit Theorem). However,

occasionally much larger fluctuations also happen that take the system far from the
stable state (Dykman et al. 1994). Such large fluctuations are rare events, and their
probabilities form the tails of the quasi-stationary population state distribution. The
mean extinction time τ (mean time to reach the absorbing state ne = 0) is determined
by this quasi-stationary distribution according to the Fermi’s golden rule (Landau and
Lifshitz 2013)

τ−1 =
∑
n>0

T (n → 0)Pst(n), (6)

where the stationary distribution Pst(n) satisfies

0 =
∑
m

[T (m → n, t)Pst(m) − T (n → m, t)Pst(n)] . (7)

In terms of the rescaled population size x = n/K = nε with ε = 1/K , λ(x) =
λn/K = Bx , and μ(x) = μn/K = x + Bx2. We look for the solution of Eq. (7) by
proposing a large deviation form of the stationary distribution

Pst(x) = C exp (−Sε/ε) (8)

with the WKB ansatz: Sε = ∑∞
i=0 εiSi . Here ε characterises the noise level, and at

the weak-noise limit, ε → 0. An asymptotic expansion in small ε corresponds to a
semiclassical approximation. In both quantum mechanics and statistical mechanics
this is also known as a WKB expansion. In the former case, ε is the Planck constant
�, characterising quantum fluctuations; and in the later case, ε is the temperature,
characterising thermal fluctuations. In stochastic population dynamics, meanwhile,
the small parameter ε is 1/K , characterising population size fluctuations.

Plugging Eq. (8) into Eq. (7) and expanding Sε to O(ε), we obtain

S0(x) =
∫ x

p(x ′) dx ′, S1(x) = 1

2
ln[μ(x)λ(x)] (9)

where p(x) = ln [μ(x)/λ(x)] = ln [(1 + Bx)/B]. It is possible to construct an effec-
tive Hamiltonian such that the solution describes an optimal path which represents the
ground (lowest-energy) state of the effective Hamiltonian:

H(x, p) = λ(x)(ep − 1) + μ(x)(e−p − 1), (10)

where the canonical momentum p = ∂S0/∂x .
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We hence obtain the stationary distribution

Pst(x) = B − 1√
2πK Bx2(1 + Bx)

e−KS0(x), (11)

where

S0(x) = 1 − B−1 − x + (x + B−1) ln(x + B−1). (12)

The leading-orderWKB action S0 describes an effective exponential barrier to extinc-
tion and the prefactor in Eq. (11) is proportional to e−S1(x).

Using Eq. (6) we obtain the mean extinction time for the logistic growth
model (Assaf and Meerson 2010) for 1/K � x � 1/

√
K ,

τ =
√
2πB

N

1

(B − 1)2
eKS0(0), (13)

which is exponentially large in K . The analytical result of the mean extinction time
Eq .(13) shows excellent agreementwithMonte Carlo simulations (Assaf andMeerson
2017).

In this section we derived the mean extinction time of a population under logistic
growth in a pedagogical way, for illustrating the basic concepts and techniques of the
WKBmethod. For more applications of the WKBmethod in single species stochastic
population models, Ovaskainen andMeerson (2010) provide an excellent overview. A
recent review of Assaf and Meerson (2017) includes various applications of the WKB
method inmulti-species population dynamics. On the technical aspect, an introduction
to the path integral representation of master equations can be found inWeber and Frey
(2017).

2.2.2 Fokker–Planck Approximation Method

The master equation, the exact formulation of the stochastic population dynamics,
is generally difficult to solve. The WKB method provides a systematic and control-
lable way to approximately solve the stationary master equation by utilising the small
parameter ε = 1/K . Another way of approximately solving the master equation is to
start from a formal Kramers–Moyal expansion:

∂P(X , t)

∂t
=

∞∑
m=1

(−1)m

m!
∂m

∂Xm
[am(X , t)P(X , t)] , (14)

where

am(X , t) =
∫

dY (Y − X)mT (X → Y ). (15)
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Pawula Theorem states that the expansion in Eq. (14) may stop either up to the second
term, or must contain an infinite number of terms. If the expansion stops after the
second term, it is called the Fokker–Planck equation (Risken 1996). Van-Kampen
made the Kramers–Moyal expansion controllable by introducing a small parameter
that is the inverse of a system size �−1 (Gardiner 1985). In the context of population
dynamics governed by the logistic growth function, � corresponds to the carrying
capacity K , and the random variable X in Eq. (14) corresponds to the population size
n. Since we use the example of logistic growth through out Sect. 2, we will trade
generality for consistency and use K and n in the following. In terms of the scaled
variable x = n/K , am ∼ K 1−m/2, the Kramers–Moyal expansion will stop at the
second term when K is large, and the system reduces to the Fokker–Planck equation.
However, the Van-Kampen system size expansion should be used with caution. It may
be valid only when x is in the vicinity of its fixed point. For the rare events driven by
large fluctuations, the Fokker–Planck approximation may yield large errors.

For the logistic growth model, the system size is characterised by the carrying
capacity K . In terms of rescaled variable x = n/K , the master equation (3) becomes

dP(x, t)

dt
= Kμ(x + δx)P(x + δx, t) + Kλ(x − δx)P(x − δx, t)

− K (μ(x) + λ(x))P(x, t), (16)

where δx = 1/K . Expanding Eq. (16) to (δx)2, we obtain the Fokker–Planck equation

dP(x, t)

dt
= 1

2K

∂2(g2P)

∂x2
− ∂( f P)

∂x
, (17)

where g2 = λ + μ = (B + 1)x + Bx2 and f = λ − μ = (B − 1)x − Bx2. In
population genetics literature, the first term is often attributed to the effect of genetic
drift, and the second term is attributed to directional selection (Kimura 1964; Ewens
2004). A diffusive process described by a Fokker–Planck equation, can be equivalently
described by a corresponding Langevin type stochastic differential equation (Gardiner
1985). For Eq. (17), the corresponding stochastic differential equation reads

dx = f (x, t) + K−1/2g(x, t)dW (t), (18)

where W (t) a Wiener process with 〈W (t)W (t ′)〉 = δ(t − t ′). Note that higher corre-
lations functions ofW (t) vanish, reflecting that the stochastic process is diffusive and
being consistent with the Fokker–Planck equation.

The stationary distribution of Eq. (17) reads (Gardiner 1985)

Pst(x) ∝ e−KSFP(x), (19)

where 0 < x < xs = n̄s/K and the effective potential

SFP(x) =
∫ xs

x
dy

2 f (y)

g2(y)
= 2

[
x − 1 + B−1 − 2 ln

(
1 + B + Bx

2B

)]
. (20)
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Fig. 1 Comparison between
S0(x) in Eq. (12) and SFP(x) in
Eq. (20) for B = 10 (Color
figure online)

In the vicinity of the stable point (attracting fixed point in the deterministic level) xs =
(B − 1)/B, S0(x) � SFP(x) � (x − xs)2 � 1, leading to the Gaussian fluctuation. A
comparison between S0(x) and SFP(x) for different x values is shown in Fig. 1. Near
the stable fixed point, fluctuations are Gaussian, and hence the stochastic processes
can be well-approximated by the Fokker–Planck equation. But if we are interested in
rare events driven by large fluctuations, for example the extinction event, the Fokker–
Planck approximation becomes invalid. As is shown in the previous section, the mean
extinction time is determined by the effective potential SFP at x = 0 which is far from
xs for B �= 1.

Compare the effective potential given by the WKB approximation

S0(0) = 1 − B−1 + B−1 ln B−1, (21)

and the corresponding result given by Fokker–Planck approximation

SFP(0) = 2
{
−1 + B−1 − 2 ln [(1 + B)/2B]

}
, (22)

we can see that although Fokker–Planck approximation predicts the correct behaviour
of the mean extinction time, namely, τ ∼ ecK , it yields an error that is exponentially
large in K (Doering et al. 2005; Bressloff and Newby 2014). Only in the special
case when B → 1, S0(0) − SFP(0) = o((B − 1)2) can be neglected. In this limit,
xs → 0, and hence the extinction is a typical event driven by Gaussian fluctuations.
In summary, the Fokker–Planck approximation is valid only under the special case if
B → 1 and extinction is driven by typical Gaussian fluctuations, but for B > 1, the
extinction is caused by rare events, and the Fokker–Planck approximation fails to give
accurate estimations of the mean extinction time.

The difference in the range of application between the WKB method and the
Fokker–Planck method arises from the fundamental difference between the Master
equation and the Fokker–Planck equation. A diffusion process characterised by the
Fokker–Planck equation can always be approximated by a jump process described by
the Master equation, while the reverse is true only under the conditions that the jumps
must be frequent and the step sizes of such jumps must be small comparing to the time
and length scales of observables (Gardiner 1985).
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3 Extinction Time of Populations of Two Interacting Species

In populations of two interacting species (e.g. predator and prey) or two different
types of individuals (e.g. susceptible and infected), the equilibrium state predicted by
the deterministic rate functions can either be a stable fixed point, a stable limit cycle,
marginal stable cycles, or no attractor at all. In general, for an attracting fixed point or
a stable limit cycle, the extinction from a stable quasi-stationary coexistence state is a
rare event driven by large fluctuations, and the mean extinction time will be exponen-
tially large in population size. In this situation the Fokker–Planck approximation is
invalid, whereas the WKB approximation method can provide fully controlled weak
noise expansion. But if the coexistence state is marginally stable, then the extinction
event is a diffusion process driven by typical fluctuations but not a jump. In this case
the Fokker–Planck approximation is also valid and the mean extinction time grows
algebraically with the initial population size. We discuss the different cases separately
in the following.

3.1 Extinction from an Attracting Fixed Point

As an example of multi-species stochastic systems with an attracting fixed point, we
consider the endemic SIR model. The SIR model describes the spread of a disease in a
population, with susceptible (S), infected (I ) and recovered (R) individuals. Assuming
that N is the total population size at equilibrium, individuals are born (as susceptible)
at rate μN . Susceptible, infected, and recovered individuals die at rates μS, μI I ,
and μR R, respectively. Susceptible individuals become infected at rate (β/N )SI , and
infected individuals recover at rate γ I . The corresponding deterministic rate equations
for the SIR model are

dS

dt
= μN − μS − (β/N )SI ,

dI

dt
= −μI I − γ I + (β/N )SI ,

dR

dt
= −μR R + γ I . (23)

According to this formulation, the R individuals obtain lifelong immunity and will
never become S or I again, its dynamics is thus decoupled from that of the other
two subpopulations. For simplicity, we will ignore the R individuals, and focus on
the population dynamics of only S and I individuals. By setting μI + γ = �, which
measures the effective death rate of the infected,we obtain the corresponding SImodel:

dS

dt
= μN − μS − (β/N )SI ,

dI

dt
= −� I + (β/N )SI . (24)
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For a sufficiently high infection rate, β > �, there is an attracting fixed point S̄ =
N�/β, Ī = μ(β − �)N/(β�), corresponding to an endemic state, and an unstable
fixed point S̄ = N , Ī = 0, describing an uninfected steady-state population.

Accounting for the demographic stochasticity and random contacts between the
susceptible and infected, the master equation for the probability P(n,m, t) of finding
n susceptible and m infected individuals at time t reads

dP(n,m, t)

dt
= μ [N (P(n − 1,m) − P(n,m)) + (n + 1)P(n + 1,m) − nP(n,m)]

+ � [(m + 1)P(n,m + 1) − mP(n,m)]

+ (β/N ) [(n + 1)(m − 1)P(n + 1,m − 1) − nmP(n,m)] . (25)

In a finite population, the extinction of the disease, starting from the quasi-stationary
endemic state, occurs within finite time due to rare events. It therefore is interesting
to find out the mean time it takes for the I subpopulation to go extinct. For weak
fluctuations (1/N � 1), a long lived quasi-stationary distribution has a Gaussian peak
around the stable state of the deterministic model. The Fokker–Planck approximation
to the master equation can accurately describe small deviations from the stable state,
but it fails to describe the probability of large fluctuations.

InSect. 2wediscussed theWKBapproximation used directly to the quasi-stationary
distribution that solves the stationary master equation. Elgart and Kamenev (2004)
proposed a method approximating the evolution equation for the probability generat-
ing function. The generating function associated with the probability distribution is
defined as

G(pS, pI , t) =
∑
n,m

pnS p
m
I P(n,m, t). (26)

Using the ansatz G(pS, pI , t) = exp[−Sε(pS, pI , t)/ε] with Sε(pS, pI , t) =∑
i=0 εi Si and ε = 1/N , to the leading order in ε, one obtains the Hamilton-Jacobi

equation ∂tS0 + H = 0, where H is the effective classical Hamiltonian (Kamenev
and Meerson 2008):

H = μ(pS − 1)(N − S) − �(pI − 1)I − (β/N )(pS − pI )pI S I . (27)

The meanings of pS and pI are clear now. They are the canonical momenta of S and
I respectively, and S = −∂pSS0 and I = −∂pIS0. The phase space defined by the
Hamiltonian in Eq. (27) provides an important tool to study the extinction dynamics.
Demographic stochasticity that induces the extinction of the disease proceeds along
the optimal path: a particular trajectory in the phase space. All the mean-field trajecto-
ries, described by Eqs. (24) are located in the zero energy H = 0 plane pS = pI = 1.
As illustrated in Fig. 2, the attracting fixed point of the mean-field theory becomes a
hyperbolic point A = [S̄, Ī , 1, 1] in this phase space. There are two more zero-energy
fixed points in the system: the point C = [N , 0, 1, 1] that is present in the mean-field
description, and the emergent fixed point B = [N , 0, 1, �/β] due to the presence of
fluctuations. Both of them are hyperbolic and describe extinction of the disease.
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Applications of WKB and Fokker–Planck Methods. . .

Fig. 2 a Projection of the optimal path on the (x ,y) plane (thick black line) and the mean-field trajectory
(px = py = 0) describing an epidemic outbreak (thin red line). b Projection of the optimal path on the
(px , py ) plane. x = S/N − 1, y = I/N ; K = 20 and δ ≡ 1 − �/β = 0.5 (Kamenev and Meerson 2008).
Permission for reuse obtained from the publisher (Color figure online)

The optimal path (instanton) that brings the system from the stable endemic state to
the extinction of the disease, is given by the trajectory that minimises the WKB action
S0. The optimal path must be a zero-energy trajectory. It turns out that there is no
trajectory going directly from A to C (see Fig. 2), instead, the fluctuational extinction
point B is crucial in the disease extinction.

The mean extinction time of the disease τ is exponentially large in N � 1 and

τ ∼ exp{NS0[optimal path]}, (28)

where

S0[optimal path] =
∫ ∞

−∞
(pS Ṡ + pI İ ) dt, (29)

and the integration is evaluated along the optimal path going from A to C (Kamenev
and Meerson 2008).

For populations of more than one species interacting with each other, the analyti-
cal form of the mean extinction time is generally not available (Assaf and Meerson
2017), and the optimal path can be computed only numerically. It is also worth men-
tioning that, for extinction from a deterministically stable limit cycle driven by large
fluctuations, the corresponding mean extinction time is also exponentially large in the
population size N (Smith and Meerson 2016).

3.2 Extinction fromMarginally Stable Equilibrium States

If the extinction is not driven by rare events, it can occurmuchmore quickly. Aswewill
see, the mean extinction time may have a power-law dependence on the population
size in the predator-prey and competitive Lotka–Volterra models. In these models,
since extinction is driven by Gaussian fluctuations, the Fokker–Planck approximation
can be applied.

We first take the classic Lotka–Volterra predator-prey model as an example. Use
the continuous variables q1 and q2 to represent the predator and prey populations, the
deterministic rate equations are:
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Fig. 3 Orbits of constant G = (0.01, 0.1, 0.4, 1, 1.7, 2.7, 4.2) in units of
√

σμ. The evolution proceeds
clockwise around the mean-field fixed point of N1 = N2 = 100. (Parker and Kamenev 2009). Permission
for reused obtained from the publisher

dq1
dt

= −σq1 + λq1q2,

dq2
dt

= μq2 − λq1q2, (30)

where σ represents the death rate of the predator,μ represents the birth rate of the prey,
and λ is the rate of interaction between a predator and a prey. Note that this formulation
assumes that the preys have no intrinsic death, their populationwill grow exponentially
without the presence of the predator. There are three fixed points: (q1, q2) = (0, 0),
(0,∞), and (μ/λ, σ/λ). The first one corresponds to the case where both species
are extinct. The second one describes the population explosion of the prey due to the
extinction of the predator. The third one represents the steady state where the predator
and the prey coexist at the population size N1 = μ/λ and N2 = σ/λ, respectively.

A particular feature of the Lotka–Volterra model is that there is an “accidental”
conserved quantity:

G = λq1 − μ − μ ln(q1λ/μ) + λq2 − σ − σ ln(q2λ/σ), (31)

where G = 0 corresponds to the coexistence fixed point, and G > 0 corresponds
to larger amplitude cycles (Parker and Kamenev 2009). An illustration of orbits at
different G values is shown in Fig. 3. For a given initial condition, the the predator
and prey populations cycle along a closed orbit.

The existence of an “accidental” conserved quantity G not only leads to closed
orbits, but also makes them marginally stable. Population fluctuations due to demo-
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graphic noise are isotropic in the space (q1, q2), leading to slow diffusion between the
mean-field orbits. Even large deviations from a mean-field orbit, such as extinction,
can be seen as the accumulation of many small step fluctuations in the radial direc-
tion. This is in contrast with the systems with a stable fixed point or limit cycle, such
as the endemic SIR model discussed in the previous section. In those systems, large
deviations proceed only along very special optimal paths in the phage space (Dykman
et al. 1994; Elgart and Kamenev 2004; Kamenev and Meerson 2008). Consequently,
the mean extinction time in marginally stable systems such as the predator-prey model
has a power law dependence on the sizes of the two populations.

In the presence of demographic noises, the corresponding master equation is

dP(m, n, t)

dt
= σ [(m + 1)(P(m + 1, n) − mP(m, n))

+μ(n − 1)P(m, n − 1) − nP(m, n)]

+ μ [(n − 1)P(m, n − 1) − nP(m, n)]

+ λ [(m − 1)(n + 1)P(m − 1, n + 1) − nmP(m, n)] , (32)

where P(m, n, t) is the probability of the system having m predators and n preys at
time t .

Since extinction in this case is driven by Gaussian fluctuations rather than large
jumps, the Fokker–Planck approximation can be appropriately applied.G can be iden-
tified as a “slow” dynamic variable that is responsible for the long time behaviour of
the system. In the presence of demographic stochasticity, after averaging out the “fast”
variable (angles in (q1, q2) space), one can obtain a one-dimensional Fokker–Planck
equation on the probability distribution of G. Solving the mean first passage time of
this one-dimensional problem gives that the mean extinction time τ ∼ N 3/2

1 /N 1/2
2

with N1 ≤ N2 (Parker and Kamenev 2009).
In the previous example of the predator-prey Lotka–Volterra model, overcrowding

and intra-specific competition are not considered. The death of prey is solely caused
by predation, and the per capita reproduction rate of predators only depends on the
abundance of prey. These paradise-like conditions are seldom met in real biologi-
cal systems. Instead, competition is the norm and battles over resources for survival
and reproduction can often be fierce and unforgiving. The competitive Lokta-Volterra
model captures the self-limiting behaviour of the population growth. The correspond-
ing deterministic rate equations are:

dx

dt
= r1x (1 − x − αy) , (33)

dy

dt
= r2y (1 − y − αx) , (34)

where x = n1/K1, y = n2/K2 are rescaled population size, in which n1 and n2 are
the population size of each of the competing species, Ki is the carrying capacity for
each of them, r1 and r2 are the intrinsic optimal growth rates of the two species when
competition is absent, and α ∈ [0, 1] is the competition coefficient between the two
species.
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In the limiting case when α = 0, the growth of the two species are independent of
each other. When 0 < α < 1, there is an attracting fixed point x∗

1 = y∗
2 = 1/(1 + α)

where the two species coexist. If α = 1, the two species are competitively identical.
Consdiering that they have the same carrying capacity K1 = K2 = K , the only
difference is that one species reproduces faster and dies sooner than the other. This
leads to the degenerate case where there is a line of fixed points corresponding to
the marginally stable coexistence of the two species with the ratio of populations
determined uniquely by the initial conditions. In the degenerate case, the Fokker–
Planck approximation can be applied. The corresponding Fokker–Planck equation is
equivalent to stochastic differential equations of x(t) and y(t), which can be reduced
to one-dimension by introducing z(t) = x(t) − y(t):

dz = v(z) + √
2D(z)dW (t). (35)

Here W (t) is a Wiener process. By determining the drift v(z) and the diffusion D(z)
terms, the absorption time (the time until one of the species goes extinct) is τ ∼ K (Lin
et al. 2012).

Parsons et al. (2008) also studied the competition dynamics of a fast-living species
and a slow-living species, which have the same carrying capacity. The authors com-
pared the absorption time to the prediction of the correspondingWright–Fisher model
of fixed population size, and found that it depends on the relative abundance of the
two species. The absorption time is longer when the initial frequency of the fast-living
species is higher, and shorter when it is lower. The work of (Kogan et al. 2014) incor-
porated the “fast” and “slow” life history features with infectious diseases dynamics
and studied the absorption time under the scenario of two pathogens competing for
the same susceptible host population, in which one pathogen has higher infection rate
yet its hosts recover more quickly compared the other pathogen. Additional interest-
ing works on extinction along a quasi-neutral line where population dynamics can be
validly modelled by the Fokker–Planck approximation include Parsons and Quince
(2007) and Constable et al. (2013).

4 Discussion and Conclusions

In this paper, we provide a comparative analysis of the WKB and Fokker–Planck
approximation methods in analysing the problem of population extinction under weak
demographic fluctuations. In particular, we focus on estimating the mean extinc-
tion/absorption time of well-mixed systems containing a single or two interacting
species. The mean extinction time has distinct behaviours depending on the nature
of the stationary states (fixed points) of the corresponding deterministic model. If
the fixed point is attractive (for instance, logistic growth model and the endemic SIR
model), the extinction is driven by rare events and the mean extinction time is experi-
entially large in population size. In this case, theWKBmethod gives rise to the correct
result whereas the Fokker–Planck approximation leads to an exponentially large error
in the mean extinction time. If the stationary state is marginally stable (for instance,
the competitive Lotka–Volterra model when the two species have the same carrying

123

Author's personal copy



Applications of WKB and Fokker–Planck Methods. . .

capacity), the extinction instead is driven by typical Gaussian fluctuations and the
mean extinction time has a power law dependence on the population size. Under this
situation, the Fokker–Planck approach is also appropriate.

Here we only included examples of applying the WKB method in analysing a few
basic population dynamics models, but note that the method has much broader appli-
cations in stochastic population dynamics. For instance, it provides a powerful tool in
studying population extinction in fragmented landscapewith dispersal between habitat
patches (Meerson and Sasorov 2011; Khasin et al. 2012) and on heterogeneous net-
works (Hindes and Schwartz 2016, 2017). In addition, it has been applied to study the
most likely path of extinction from species coexistence in the context of evolutionary
games (Park and Traulsen 2017). For further reading on the vast applications of the
WKB approximation method, we recommend the following reviews and references
therein. The concise review of Ovaskainen and Meerson (2010) provides an excellent
overview of the WKB approximation in single species stochastic population models.
Technique-wise, Weber and Frey (2017) provides a comprehensive introduction to
the path integral representation of master equations. The recent review of Assaf and
Meerson (2017) includes great details on applications of the WKB method in various
models and pointed out interesting open questions.

Through this paper, we hope to arouse in biologists the interest to the WKB
method and the great potential of applying it to solving stochastic population dynam-
ics problems. Using several examples of the successful applications of the WKB and
Fokker–Planck methods in solving evolutionary biology problems, we highlight the
great value of knowledge transfer between physics and biology, and we encourage
further exchange of knowledge and collaborations between physicists and biologists
for developing novel approaches in modelling biological evolution.
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