
Page 1 of 5course2full
Printed: 10/18/09 6:07:25 PM Printed For: Anna Lorenc

#Prepare a vector with number of eggs in a nest, with 6 elements:

eggNest <- c(1,3,4,0,5,3)

#Check if they have names

> names(eggNest)

NULL

#Give names to vector elements:

> names(eggNest) <- c("sparrow", "crow", "finch","sparrow", "stork")

> eggNest

sparrow crow finch sparrow stork <NA>

 1 3 4 0 5 3

#Check names

> names(eggNest)

[1] "sparrow" "crow" "finch" "sparrow" "stork" NA

#Not every element has a name. Give sixth element a name "eagle"

> names(eggNest)[6] <- "eagle"

> eggNest

sparrow crow finch sparrow stork eagle

 1 3 4 0 5 3

#Take eggNest element with name "finch"

 > eggNest["finch"]

finch

 4

 #Take eggNest element with name "sparrow". Be aware of doubled names!

> eggNest["sparrow"]

sparrow

 1

#Which elements of the vector "eggNest" are bigger than 2?

> eggNest>2

sparrow crow finch sparrow stork eagle

 FALSE TRUE TRUE FALSE TRUE TRUE

> which(eggNest>2)

 crow finch stork eagle

 2 3 5 6

#What are the names of birds which had less than 3 eggs?

> names(eggNest)[eggNest<3]

[1] "sparrow" "sparrow"

#Change second sparrow entry into "housesparrow".

> names(eggNest)

[1] "sparrow" "crow" "finch" "sparrow" "stork" "eagle"

> names(eggNest)[4]<-"housesparrow"

#Which vector element name is "stork"?

which(names(eggNest)=="stork")

#Change number of eggs for eagle into 4.

Page 2 of 5course2full
Printed: 10/18/09 6:07:25 PM Printed For: Anna Lorenc

> eggNest["eagle"]<-4

> eggNest

#Another data type: factor

#Prepare a vector with place of origin of 15 fish samples

lakes

 [1] "Schoeh" "Schoeh" "Schoeh" "GrPl" "GrPl" "GrPl" "KlPl" "KlPl" "KlPl"
"Tramm" "Tramm" "Tramm" "other" "other" "other"

>lakes<-rep(c("Schoeh","GrPl","KlPl","Tramm","other"), each =3)

#Prepare a vector with number of fish caught at each location

 fish

 [1] 6 3 8 3 7 7 7 0 2 9 7 1 5 7 0

> fish<-c(6, 3, 8, 3, 7, 7, 7, 0, 2, 9, 7, 1, 5, 7, 0)

#Compute average number of fish caught

>mean(fish)

#Compute mean number of fish for each lake separately

#Each lake is treated as a separate level of a factor "lakes"and function is applied to
each level

#tapply() applies a function for each level separately.

#tapply(vector of data, vector with level assignement, function)

>lakesFactor<-factor(lakes)

>lakesFactor

> tapply (fish, lakesFactor, mean)

Get by lake max, median, sum...

>tapply(fish, lakesFactor,max)

>tapply(fish, lakesFactor,median)

>tapply(fish, lakesFactor,sum)

#Check what happens when you use lakes instead of lakesFactor

#R by default converts lakes into factor

###########

#There are a plenty of example datatsets provided with standard R installation. To see
them, use function data():

> data()

#To use one of them, give dataset name as an argument:

> data(chickwts)

#Display chickwts object. What class it is?

>chickwts

> class(chickwts)

This is a dataframe. It looks as a matrix or table, in reality it is a bunch of

vectors of the same length. Vectors may have different mode (one character, another
logical etc)

#check dimensions/numer of columns and rows of chickwts

>dim(chickwts)

Page 3 of 5course2full
Printed: 10/18/09 6:07:25 PM Printed For: Anna Lorenc

>ncol(chickwts)

>nrow(chickwts)

#Subset this data frame by first row

> chickwts[1,]

#And by first column

> chickwts[,1]

#second column

#feed values are here as factors. No "", levels.

> chickwts[,2]

#Subset the dataframe by "feed" column, using its name (there are 2 ways of doing it)

>chickwts$feed

>chickwts[,"feed"]

#Take first 4 rows from all columns

> chickwts[1:4,]

#Take rows 3,7,12,1 from all columns

> chickwts[c(3,7,12,1),]

#Select rows 3,7,12,1, from column 2

> chickwts[c(3,7,12,1) , 2]

#or:

>subset<-c(3,7,12,1); chickwts[subset, 2]

#transpose the dataframe and check dimensions now

>t(chickwts)

>dim(t(chickwts))

#Apply a function "mean" on the whole dataframe. What it did?

> mean(chickwts)

#Repeat it for the first column

> mean(chickwts[,1])

#Compute mean chciken weight for each type of feed separately

##tapply = applying function separately for each level of a factor.

> tapply(chickwts[,1],chickwts[,2],mean)

or

>tapply(chickwts$weight,chickwts$feed,mean)

#########

##Make your own dataframe, with data about bacterial growth

#It should contain columns "medium", "strain" and "growth".

#Medium are 4 repetitions of a set "minimal","full","min+vit", mode:factor

#strain: "normal" and mutant, each repeated 6 times, mode:factor

#growth: values 2,4,5,2,3,6,1,4,2,3,6,5

Page 4 of 5course2full
Printed: 10/18/09 6:07:25 PM Printed For: Anna Lorenc

BacterialGrowth<-data.frame(

 medium=as.factor(rep(c("minimal","full","min+vit"),4)),

 strain=as.factor(rep(c("normal","mutant"),each=6)),

 growth=c(2,4,5,2,3,6,1,4,2,3,6,5))

#Compute average growth

by strain

by medium

tapply(BacterialGrowth$growth,BacterialGrowth$strain,mean)

tapply(BacterialGrowth$growth,BacterialGrowth$medium,mean)

#Write it differently

tapply(BacterialGrowth[,"growth"],BacterialGrowth[,"strain"],median)

tapply(BacterialGrowth[,3],BacterialGrowth[,2],median)

#Read help file for the function write.table() and write BacterialGrowth in a
tab-delimited txt file

write.table(BacterialGrowth, file="bactGrowth.txt")

###########################

#######################

#How to load data. Have a look on a .txt file with daphnia measurements

#read helpfile for read.table() function

#Read-in data from daphnia.txt file. Keep the header!

daphnia<-read.table("daphnia.txt",header=TRUE)

#Compute average size by clone

tapply(daphnia$size,daphnia$clone,mean))

#Compute average size by medium

tapply(daphnia$size,daphnia$medium,mean))

Array - simplest array is matrix. Prepare 4 x 5 matrix, containing numbers from 1 to 20.
Supply: data, ncol, nrow. By default fills by columns!

a<-matrix(1:20,4,5)

#Indexing of matrix: as for dataframe

#Take element from second row, third column

a[2,3]

#Take elements from first and second row, third, fourth and fifth column

a[1:2,3:5]

#Take element from all except first rows, second and third column

a[-1,2:3]

#Take fourth element of the matrix

a[4]

#Take fourth column

a[,4]

#Name columns "col1" etc.

> colnames(a)<-c("col1","col2","col3","col4","col5")

#Name rows "row1" etc.

Page 5 of 5course2full
Printed: 10/18/09 6:07:25 PM Printed For: Anna Lorenc

> rownames(a)<-c("row1","row2","rowl3","row4")

#Take elements from second column, rows 2 and 3

> a[c("row2","rowl3"),"col2"]

#Differences between matrix and dataframe

#In matrices all elements have to be the same mode. Here R coerces everything into
character.

>ac<-a

> ac[,"col2"]<-c("a","b","c","d")

> ac

#it is treated as an array, not as a bunch of vectors. Compare result of names() for
daphnia and a

>names(a)

>names(daphnia)

#Also matrix$columnname does not work.

#Change matrix into a dataframe with as.data.frame()

#check output of functions names(), mean() for a and b

 b<-as.data.frame(a)

 >b[,"col2"]<-c("a","b","c","d")

 >names(b)

 >b$col2

 >mean(b)

 >mean(a)

 #Substitute values in col2 of b by 34,23,2,1

 > b$col2<-c(34,23,2,1)

#Add last column (with numbers 1:4) to the matrix a with function cbind()

>cbind(a, lastcol<-1:4)

#Add a column to the dataframe b with function cbind()

#To the same defining a new vector

>cbind(b, lastcol<-1:4)

>b$lastcol <- 1:4

>b

#Compute mean of rows and mean of columns for a and for b

>apply(a,1,mean)

> apply(a,2,mean)

>apply(b,1,mean)

> apply(b,2,mean)

#Above is faster done with specific functions:

rowMeans(a)

colMeans(a)

