
What is possible in R?

Almost everything:

• Statistics (tests, modeling, exploratory: PCA, clustering of
the data)

• High throughput biological data:

gene expression on arrays (Affymetrix, Agilent, custom
arrays etc), qPCR, SAGE, flow cytometry, high throughput
sequencing, microRNA, RNAi screens, mass spec data,
CGH, Chip-chip, genome-wide SNP (Affymetrix, Ilumina)

• population genetics, sequence logos, google maps ... and
tons of other small tools

• R-end in other software: SPSS, gene expression software,

• Graphics R graph gallery (http://addictedtor.free.fr/
graphiques/)

1

1Monday, October 19, 2009

http://addictedtor.free.fr/graphiques/thumbs.php
http://addictedtor.free.fr/graphiques/thumbs.php

Today

• vectors - names

• mode factor and function tapply()

• data frames

• matrices and arrays

• operations on matrices/data frames: apply()

• reading-in data from a text file

• writing data in a text file

2

2Monday, October 19, 2009

Should not start with number, should not contain blanks “,”,”_”

Case sensitivity: “Name” is different from “name”

It is allowed to give names only to certain elements of a vector

Avoid doubled names

Vector may be subset by names

Names may be subset, too

> names(vector)

> names(vector) <- c(name1, name2...)

> vector[c(name1,name2...)]

> names(vector)[2] <- “newname”

Names

3

3Monday, October 19, 2009

Factor is another data mode. It is similar to character, but it is used in
calculations as qualitative variable

> size <- factor(c("small","medium","big", "small",
"big"))

> size

[1] small medium big small big

Levels: big medium small

tapply() allows to compute function values for each factor level separately

>tapply(vector, factor, function)

>applesFromTrees <- c(45,234,240,5,120)

>tapply(applesFromTrees,size,mean)

Factor

4

4Monday, October 19, 2009

Contains columns of data

Similar to spreadsheet: each column is a vector of data of the same mode

But different columns may have different modes

organism genomeSizeBp estGeneCount zoology inOurLab

“human” 3000000000 20000 Vertebrate TRUE

“mouse” 3000000000 20000 Vertebrate TRUE

“yeast” 12100000 6034 Unicellular FALSE

“roundworm” 97000000 19099 Invertebrate FALSE

“fruit fly” 135600000 13061 Invertebrate TRUE

comparativeGenomics<-data.frame(organism=c (“human”,”mouse”....),
genomeSizeBp = c(3000000000,3000000000,...),
estGeneCount=c(20000,20000,...),
zoology =
factor(c(“Vertebrate”,”Vertebrate”...)),
inOurLab = c(TRUE,TRUE,FALSE,...)

)

Data frame

5

5Monday, October 19, 2009

Working with dataframes

Accessing a column by name
comparativeGenomics$zoology

Accessing an element from a column

comparativeGenomics$zoology[2]

Also by indexes

comparativeGenomics[1,]

comparativeGenomics[,3]

comparativeGenomics[2,3]

first row

third column

comparativeGenomics[2:4,3]

and by names
comparativeGenomics[“inOurLab”,1:2]

dataframe[rows,columns]

third elem. from second row

6

6Monday, October 19, 2009

Reading data from a file

data<-read.table(file,header=FALSE, skip = 0, sep = “ ”,
dec=“.“,...)

read.csv(), read.csv2(),read.delim()...

scan()

write.table()

Reading data from a file with tabular data format. Data is read-in as a
data frame:

Reading data from a text file or console:

Writing data in a text file:

7

7Monday, October 19, 2009

Arrays and matrices

Matrices are two dimensional arrays

In matrices data are organized in rows and columns

All the data MUST have the same mode

All mathematical operations on matrices

> a<-matrix(1:9,nrow=3)
> a
 [,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

> d<-array(1:24,dim=c(2,3,4))
> d
, , 1

 [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

, , 2

 [,1] [,2] [,3]
[1,] 7 9 11
[2,] 8 10 12

, , 3

 [,1] [,2] [,3]
[1,] 13 15 17
[2,] 14 16 18

, , 4

 [,1] [,2] [,3]
[1,] 19 21 23
[2,] 20 22 24

Matrices and dataframes may be converted
one into another

as.matrix()
as.data.frame()

8

8Monday, October 19, 2009

mean(data.frame)

Apply a function to the whole data frame

mean(data.frame[1:3,4])

Apply a function to a subset

Apply a function to each row (1) or column (2) separately

apply(data.frame,1,mean)

apply(data.frame,2,mean)

Data frames and matrices

9

9Monday, October 19, 2009

Working with dataframes and matrices

Adding columns or rows
cbind(data.frame,vector)
rbind (matrix, vector)

Adding/changing rownames and column names

Transposing matrix/data frame

Checking dimensions

colnames (matrix)
colnames (matrix) <- c(...)
colnames (matrix)[3:5] <- c(...)
rownames (matrix)

t(data.frame)

dim(data.frame)

Sub-setting by row and column names
data.frame[c(“row2”,”row40”) , c(“column1”,”column3”)]

10

10Monday, October 19, 2009

