This page provides additional sources and citations beyond the maximum 15 provided in the Science article
1. M. Furmanski, Threatened pandemics and laboratory escapes: Self-fulfilling prophecies -. Bulletin of the Atomic Scientists (2014), (available at https://thebulletin.org/2014/03/threatened-pandemics-and-laboratory-escapes-self-fulfilling-prophecies/).
2. GZHS-United iGEM Team, And Then There Were None (2018), (available at http://2018.igem.org/Team:GZHS-United/Design).
3. R. M. Johnson, J. L. Rasgon, Densonucleosis viruses (‘densoviruses’) for mosquito and pathogen control. Current Opinion in Insect Science. 28, 90–97 (2018).
4. DARPA, Broad Agency Announcement Insect Allies, Biological Technologies Office,HR001117S0002 November 1, 2016 (2016), (available at https://www.fbo.gov/utils/view?id=40638c9e7d45ed8310f9d4f4671b4a7b).
5. Johns Hopkins Center for Health Security, Technologies to Address Global Catastrophic Biological Risks (2018), (available at https://www.centerforhealthsecurity.org/our-work/publications/technologies-to-address-global-catastrophic-biological-risks).
6. M. W. Smithson, A. J. Basinki, S. L. Nuismer, J. J. Bull, Transmissible vaccines whose dissemination rates vary through time, with applications to wildlife. Vaccine. 37, 1153–1159 (2019).
7. A. J. Basinski, S. L. Nuismer, C. H. Remien, A little goes a long way: Weak vaccine transmission facilitates oral vaccination campaigns against zoonotic pathogens. PLOS Neglected Tropical Diseases. 13, e0007251 (2019).
8. S. L. Nuismer, B. M. Althouse, R. May, J. J. Bull, S. P. Stromberg, R. Antia, Eradicating infectious disease using weakly transmissible vaccines. Proc. R. Soc. B. 283, 20161903 (2016).
9. J. M. Torres, C. Sánchez, M. A. Ramı́rez, M. Morales, J. Bárcena, J. Ferrer, E. Espuña, A. Pagès-Manté, J. M. Sánchez-Vizcaı́no, First field trial of a transmissible recombinant vaccine against myxomatosis and rabbit hemorrhagic disease. Vaccine. 19, 4536–4543 (2001).
10. K. A. McColl, J. C. Merchant, J. Hardy, B. D. Cooke, A. Robinson, H. A. Westbury, Evidence for insect transmission of rabbit haemorrhagic disease virus. Epidemiology & Infection. 129, 655–663 (2002).
11. O’Hara P, The illegal introduction of rabbit haemorrhagic disease virus in New Zealand. Rev Sci Tech. 25, 119–123 (2006).
12. H. Tyndale-Biscoe, L. A. Hinds, Introduction – virally vectored immunocontraception in Australia. Wildl. Res. 34, 507–510 (2007).
13. L. A. Hinds, Feasibility of immunocontraception for managing stoats in New Zealand-page 94, 109 (2000).
14. W. R. Henderson, E. C. Murphy, Pest or prized possession? Genetically modified biocontrol from an international perspective. Wildlife Research. 34, 578 (2007).
15. Conference Of The Parties To The Convention On Biological Diversity, Report of the Canada-Norway expert workshop on risk assessment for emerging applications of living modified organisms UNEP/CBD/BS/COP-MOP/4/INF/13, 39 (2007).
16. E. Angulo, B. Gilna, When biotech crosses borders– international governance of self-dispersive GMOs purposefully released for public health, controlling invasive species and pests, and treating wildlife. Nature Biotechnology (2008), doi:10.1038/nbt0308-277.
17. E. Angulo, B. Cooke, First synthesize new viruses then regulate their release? The case of the wild rabbit. Molecular Ecology. 11, 2703–2709 (2002).
18. R. P. Ortega, Can Vaccines for Wildlife Prevent Human Pandemics? Quanta Magazine (2020), (available at https://www.quantamagazine.org/can-vaccines-for-wildlife-prevent-human-pandemics-20200824/).
19. M. Cogley, Could self-spreading vaccines stop a coronavirus pandemic? The Telegraph (UK) (2020), (available at https://www.telegraph.co.uk/technology/2020/01/28/could-self-spreading-vaccines-stop-global-coronavirus-pandemic/).
20. K. M. Bakker, T. E. Rocke, J. E. Osorio, R. C. Abbott, C. Tello, J. E. Carrera, W. Valderrama, C. Shiva, N. Falcon, D. G. Streicker, Fluorescent biomarkers demonstrate prospects for spreadable vaccines to control disease transmission in wild bats. Nature Ecology & Evolution. 3, 1697–1704 (2019).
21. S. L. Nuismer, J. J. Bull, Self-disseminating vaccines to suppress zoonoses. Nature Ecology & Evolution (2020), doi:10.1038/s41559-020-1254-y.
22. E. C. Holmes, A. Rambaut, K. G. Andersen, Pandemics: spend on surveillance, not prediction. Nature. 558, 180–182 (2018).
23. J. L. Geoghegan, E. C. Holmes, Predicting virus emergence amid evolutionary noise. Open Biol. 7, 170189 (2017).
24. S. J. Anthony, J. H. Epstein, K. A. Murray, I. Navarrete-Macias, C. M. Zambrana-Torrelio, A. Solovyov, R. Ojeda-Flores, N. C. Arrigo, A. Islam, S. Ali Khan, P. Hosseini, T. L. Bogich, K. J. Olival, M. D. Sanchez-Leon, W. B. Karesh, T. Goldstein, S. P. Luby, S. S. Morse, J. A. K. Mazet, P. Daszak, W. I. Lipkin, A Strategy To Estimate Unknown Viral Diversity in Mammals. mBio. 4, e00598-13 (2013).
25. M. Wille, J. L. Geoghegan, E. C. Holmes, How accurately can we assess zoonotic risk? PLoS Biol. 19, e3001135 (2021).
26. D. Carroll, P. Daszak, N. D. Wolfe, G. F. Gao, C. M. Morel, S. Morzaria, A. Pablos-Méndez, O. Tomori, J. A. K. Mazet, The Global Virome Project. Science. 359, 872–874 (2018).
27. C. J. Carlson, C. M. Zipfel, R. Garnier, S. Bansal, Global estimates of mammalian viral diversity accounting for host sharing. Nat Ecol Evol. 3, 1070–1075 (2019).
28. K. M. Barnett, D. J. Civitello, Ecological and Evolutionary Challenges for Wildlife Vaccination. Trends in Parasitology. 36, 970–978 (2020).
29. R. K. French, E. C. Holmes, An Ecosystems Perspective on Virus Evolution and Emergence. Trends in Microbiology. 28, 165–175 (2020).
30. R. K. Plowright, C. R. Parrish, H. McCallum, P. J. Hudson, A. I. Ko, A. L. Graham, J. O. Lloyd-Smith, Pathways to zoonotic spillover. Nat Rev Microbiol. 15, 502–510 (2017).
31. D. Gavier-Widén, K. Ståhl, L. Dixon, No hasty solutions for African swine fever. Science. 367, 622–624 (2020).
32. D. W. Ross, Infectious vaccines. Arch Pathol Lab Med. 122, 100–101 (1998).
33. T. J. Varrelman, A. J. Basinski, C. H. Remien, S. L. Nuismer, Transmissible vaccines in heterogeneous populations: Implications for vaccine design. One Health. 7, 100084 (2019).
34. M. L. Paff, S. L. Nuismer, A. D. Ellington, I. J. Molineux, R. H. May, J. J. Bull, Design and engineering of a transmissible antiviral defense. Journal of Biological Engineering. 10 (2016), doi:10.1186/s13036-016-0033-4.
35. J. J. Bull, M. W. Smithson, S. L. Nuismer, Transmissible Viral Vaccines. Trends in Microbiology. 26, 6–15 (2018).
36. P. Van Damme, I. De Coster, A. S. Bandyopadhyay, H. Revets, K. Withanage, P. De Smedt, L. Suykens, M. S. Oberste, W. C. Weldon, S. A. Costa-Clemens, R. Clemens, J. Modlin, A. J. Weiner, A. J. Macadam, R. Andino, O. M. Kew, J. L. Konopka-Anstadt, C. C. Burns, J. Konz, R. Wahid, C. Gast, The safety and immunogenicity of two novel live attenuated monovalent (serotype 2) oral poliovirus vaccines in healthy adults: a double-blind, single-centre phase 1 study. The Lancet. 394, 148–158 (2019).
37. C. Gallardo, A. Soler, I. Rodze, R. Nieto, C. Cano‐Gómez, J. Fernandez‐Pinero, M. Arias, Attenuated and non‐haemadsorbing (non‐ HAD ) genotype II African swine fever virus ( ASFV ) isolated in Europe, Latvia 2017. Transbound Emerg Dis. 66, 1399–1404 (2019).
38. PREEMPT, Prediction of Spillover and Interventional Animal Vaccination to Prevent Emerging Pathogen Threats in Current and Future Zones of US Military Operation (2021), (available at https://www.preemptproject.org/about).
39. G. Verheugen, Commission directive 2009/9/EC of 10 February 2009 amending Directive 2001/82/EC of the European Parliament and of the Council on the Community code relating to medicinal products for veterinary use, 52 (2009).
40. European Medicines Agency, Guideline on live recombinant vector vaccines for veterinary use (CVMP), 6 (2004).
41. National Biotechnology Authority Zimbabwe, Procedure for assessment of release of human vaccine (2018), (available at http://bch.cbd.int/database/record.shtml?documentid=113303).
42. International Office of Epizootics, Biological Standards Commission, OIE Manual of diagnostic tests and vaccines for terrestrial animals: (mammals, birds and bees), Article 4.18.6.2.c (2018).
43. R. T. Chen, B. Carbery, L. Mac, K. I. Berns, L. Chapman, R. C. Condit, J.-L. Excler, M. Gurwith, M. Hendry, A. S. Khan, N. Khuri-Bulos, B. Klug, J. S. Robertson, S. J. Seligman, R. Sheets, A.-L. Williamson, The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG). Vaccine. 33, 73–75 (2015).
44. A. Sakurai, T. Ogawa, J. Matsumoto, T. Kihira, S. Fukushima, I. Miyata, H. Shimizu, S. Itamura, K. Ouchi, A. Hamada, K. Tani, N. Okabe, T. Yamaguchi, Regulatory aspects of quality and safety for live recombinant viral vaccines against infectious diseases in Japan. Vaccine. 37, 6573–6579 (2019).
45. Convention on Biological Diversity, Subsidiary Body on Scientific, Technical and Technological Advice (SBSTTA) (2021), (available at https://www.cbd.int/sbstta/).
46. Conference Of The Parties To The Convention On Biological Diversity, Decision adopted by the conference of the parties to the convention on biological diversity 14/19. Synthetic biology CBD/COP/DEC/14/19, 4 (2018).
47. H. J. Larson, R. M. Clarke, C. Jarrett, E. Eckersberger, Z. Levine, W. S. Schulz, P. Paterson, Measuring trust in vaccination: A systematic review. Human Vaccines & Immunotherapeutics. 14, 1599–1609 (2018).
48. T. Chantler, E. Karafillakis, J. Wilson, Vaccination: Is There a Place for Penalties for Non-compliance? Appl Health Econ Health Policy. 17, 265–271 (2019).
49. J. B. Sandbrink, M. C. Watson, A. M. Hebbeler, K. M. Esvelt, Safety and security concerns regarding transmissible vaccines. Nat Ecol Evol (2021), doi:10.1038/s41559-021-01394-3.
50. L. Coughlan, Factors Which Contribute to the Immunogenicity of Non-replicating Adenoviral Vectored Vaccines. Front. Immunol. 11, 909 (2020).